

COOPERATING TECHNICAL PARTNER INFORMATION EXCHANGE

Vertical Datums: how they impact modeling & mapping March 29, 2017 Association of State Floodplain Managers

AUDIO AND WEB SETTINGS

	File View Help]
*****	- Audio	
-	 Telephone Mic & Speakers <u>Settings</u> 	
¥ J	MUTED ▲ 300000000	
•		
	Questions	
	<u>*</u>	
	[Enter a question for staff]	
		4
	Webinar ID: 275-918-366	
	GoTo Webinar	

Your Participation

Open and hide your control panel using the red arrow button

Join audio:

- Choose "Mic & Speakers" to use VoIP
- Choose "Telephone" and dial using the information provided

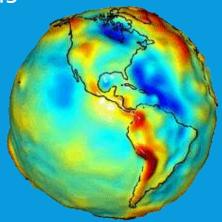
Submit questions and comments via the **Questions** panel

WEBINAR LOGISTICS

- All lines will be automatically be muted.
- Use the Question window in your webinar control panel to submit your question or comment to the ASFPM Organizer.
- Select questions will be read to the presenter and answered.
- Questions not asked during the webinar will be answered and made available in a follow-up email.

CONTINUING EDUCATION CREDIT (CEC) LOGISTICS

- Certified Floodplain Managers (CFM[®]) are eligible for 1 Continuing Education Credit (CEC) for participating in this webinar.
- You must register individually and indicate you are a CFM® at time of registration.
- Eligibility for CEC is dependent on your participation in poll questions and time spent viewing the webinar, as determined by the webinar software.
- Attending this webinar in a group setting or only viewing the recording is NOT eligible for CEC.


AGENDA

Introduction - Alan Lulloff

Vertical Datums: how they impact modeling & mapping presented by Doug Marcy & Brandon Krumwiede, NOAA Office for Coastal Management

- Definition and overview of vertical datums
- History of previous datums
- Transformations
- NOAA VDATUM
- Upcoming GRAV-D
- Questions/Discussion

ASFPM MAPPING AND ENGINEERING STANDARDS COMMITTEE COOPERATING TECHNICAL PARTNER SUB-COMMITTEE

Co-chairs:

- Amanda Flegel, PE, CFM; Illinois State Water Survey
- Thuy Patton, PE, CFM; Colorado Water Conservation Board

<u>Goals:</u>

- Identify common concerns
- Provide opportunities for information exchange
- Identify training needs
- Promote and document the value of CTPs

Integrating Elevation Data

Why Integrate Elevation Data?

- Driving factor is being able to map and model across the land-water interface. Multiple datasets can be used for this, including topographic and bathymetric data.
- Elevation data are used for a number of applications:
 - Marine navigations
 - Shoreline delineation
 - Coastal habitat restoration
 - Erosion monitoring
 - Storm surge modeling
 - Tsunami modeling
- Multiple data sets are often used, in which case data consistency (i.e., the spatial reference) is essential for maintaining data accuracy

Integrating Elevation Data

Integrating Elevation Data: Things to Consider

•Spatial Framework

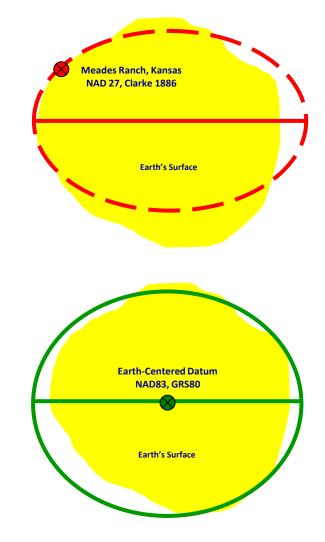
- Coordinate system: projection, datum, ellipsoid
- Vertical datum used to reference height and depth values

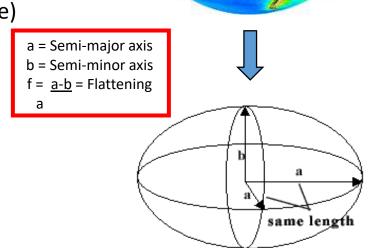
Resolution

- Cell size that will be used to represent elevation data
- Scale of application/analysis
- Topographic data are usually available at a higher resolution than bathymetric data

- Purpose
 - What do you intend to do with the results?
 - What are your accuracy requirements?
- Processing the data
 - Converting data into a consistent format
 - What tools are available to help you do this?

Coastal Inundation Mapping – Training


http://coast.noaa.gov/digitalcoast/training/inundationmap

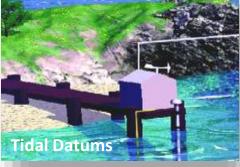

Datums


- A datum serves as a reference point for calculating surface locations, heights, and depths
- A datum can be geocentric (Earth-centered) or locally established
- Types of Datums:
 - Horizontal datum: defines the position of the ellipsoid relative to the Earth, and is used for measuring X,Y locations on the Earth's surface
 - Vertical datum: references a modeled surface for calculating height or depth at a particular location on the Earth's surface.

Ellipsoids

- Many datums (both vertical and horizontal) are based on ellipsoids
- An ellipsoid is a three-dimensional mathematical model of the Earth's shape
- Simplified representation of earth (smooth surface) to make it easier to measure distances and calculate locations
- Ellipsoids used in the United States:
 - Clark 1886
 - Geodetic Reference System of 1980 (GRS 80)
 - World Geodetic System of 1984 (WGS 84)

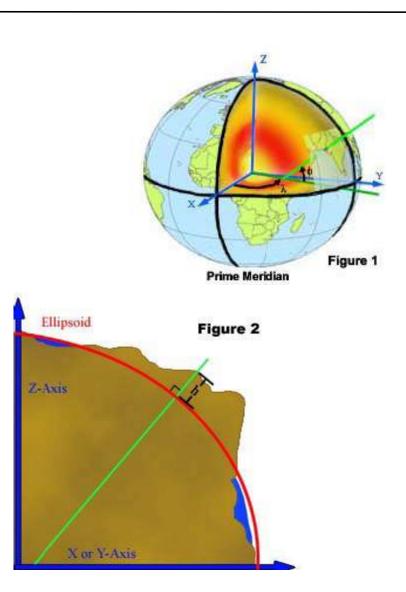
Horizontal Datums


- North American Datum of 1927 (NAD 27): based on Clarke 1866 ellipsoid
- North American Datum of 1983 (NAD 83): based on the GRS80 ellipsoid; the official datum for the U.S.
- World Geodetic System of 1984 (WGS 84): based on the WGS84 ellipsoid

	tal Datums Co Jsed in the U	-
Ellipsoid	Semi-Major Axis (m)	Semi-minor Axis (m)
Clarke 1866	6378206.4	6356583.8
GRS80 (1980)	6378137	6356752.31414
WGS84 (1984)	6378137	6356752.3142451 8

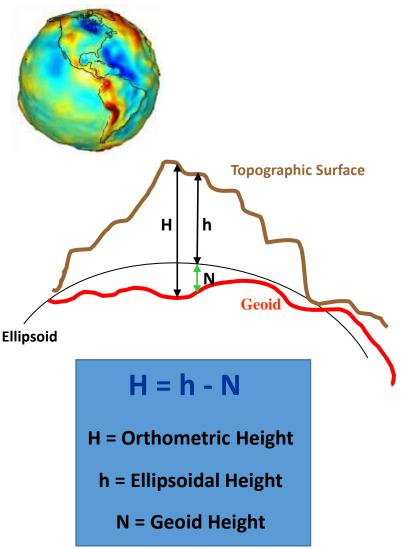
Vertical Datums

- A vertical datum is an established surface that serves as a reference to measure or model heights and depths.
- *All* elevation data are referenced to a vertical datum.
- Vertical datums are derived using one of three models:
 - Ellipsoidal (geometric) Models: A simplified surface that represents the Earth's shape and size
 - Orthometric (physical) Models: A physical and gravimetric model that approximates mean sea level (MSL)
 - **Tidal Models**: A datum that references water levels according to a certain tidal stage
- To create a continuous grid of elevation surfaces, the data sets must reference the same datum so that the height and depth values are consistent.


Vertical Datums

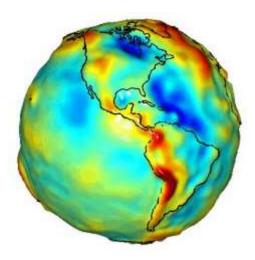
Commonly Used Vertical Datums in the U.S.

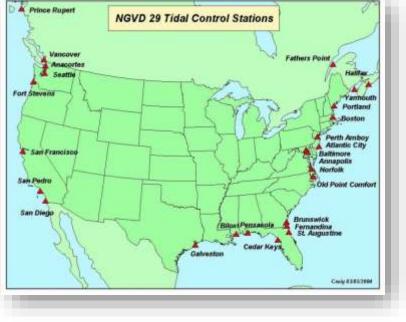
Datum	Model Type	Examples
North American Vertical Datum of 1988 (NAVD 88)	Orthometric	USGS NED Digital Elevation Models
National Geodetic Vertical Datum of 1929 (NGVD 29)	Orthometric	Older FEMA Flood Maps
Mean Lower Low Water (MLLW)	Tidal	Hydrographic Surveys
Mean High Water (MHW)	Tidal	Shoreline Data
WGS84, NAD83	Ellipsoidal	LIDAR-derived topographic data


Ellipsoidal Datums

- Remember that an ellipsoid is a simplified representation of the Earth's shape and size
- Primary means of horizontal reference, but can also be used as a vertical reference
- LiDAR is an example of data that is collected using an ellipsoid datum for referencing height values
- Height is the distance between a point on the Earth's surface to the ellipsoid
- Referred to as height above the ellipsoid, or as the geodetic height

Orthometric Datums


- A geoid is "the equipotential (level) surface of the Earth's gravity field that, on average, coincides with mean sea level in the open undisturbed ocean" (NDEP, Guidelines for Digital Elevation Data).
- Most current geoid used for deriving NAVD88 Geoid Models: 12b, 12a, 09, 06, 03, 99, 96, 93, 90
- When geoid is updated, NAVD88 has been updated
- The geoid height can be above or below the ellipsoid, therefore can be either positive or negative value.
- The orthometric height is the elevation above the geoid



Orthometric Datums: NAVD88 and NGVD29

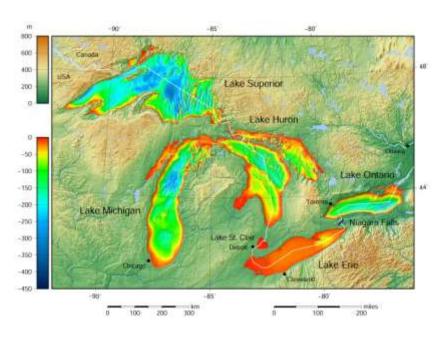
North American Vertical Datum of 1988 (NAVD88):

- Defined by one height (Father's Point, Quebec, Canada)
- Uses geoid as a surface for deriving height
- Affirmed the official civilian vertical datum for the U.S. in 1993

National Geodetic Vertical Datum of 1929 (NGVD29):

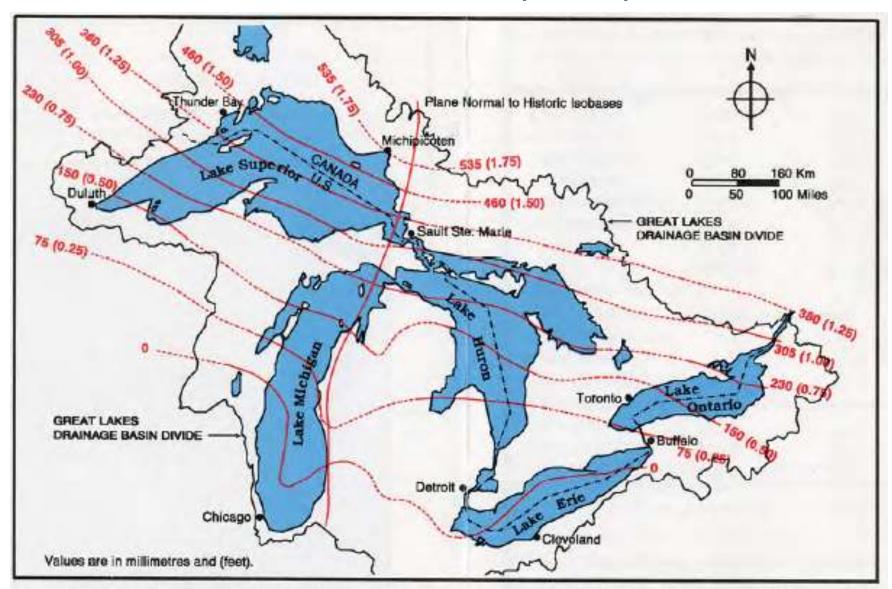
- Defined by observed heights of mean sea level measured from 26 tide gauges in the U.S. and Canada
- Surface is distorted to fit mean sea level gauges

POLL QUESTION

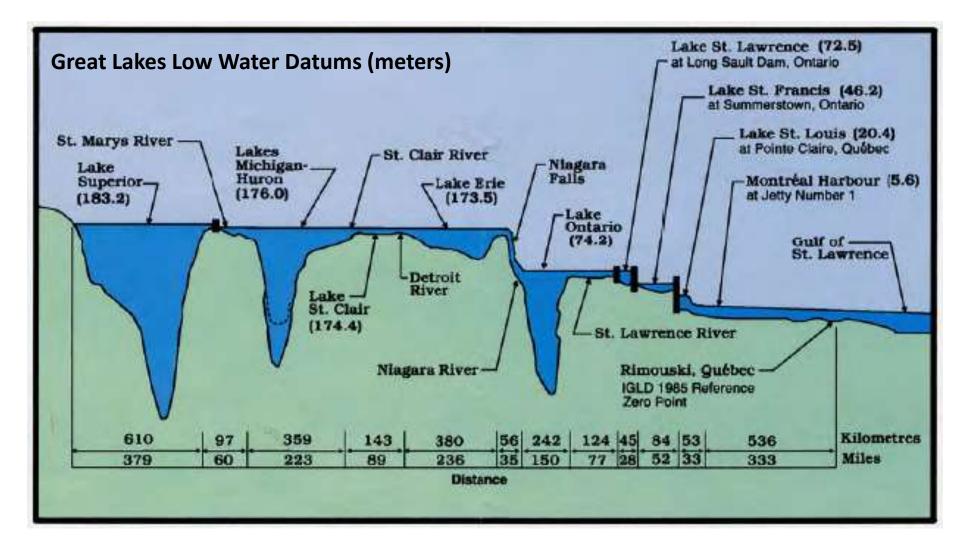

Great Lakes Datums

International Great Lakes Datum 1985 (IGLD85)

- Defined by one height (Father's Point, Quebec, Canada).
- 1985 represents the central year (1982-1988) for which water information was collected to revise the datum.
- Important for the coordinated measurement of water levels between the United States and Canada.



• Periodically revised due to isostatic rebound.



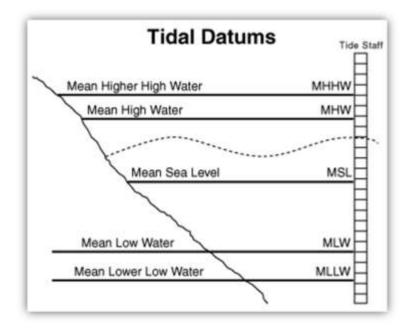
- First common datum between the United States and Canada was IGLD 1955.
- Revision performed by the Coordinating Committee on Great Lakes Basic Hydraulic and Hydrologic Data which was formed in 1953.
- Implemented in 1992.
- The only difference between IGLD85 and NAVD88 is that IGLD85 bench mark values are given in dynamic height units and NAVD88 values are given in Helmert orthometric height units.

International Great Lakes Datum 1985 (IGLD85)

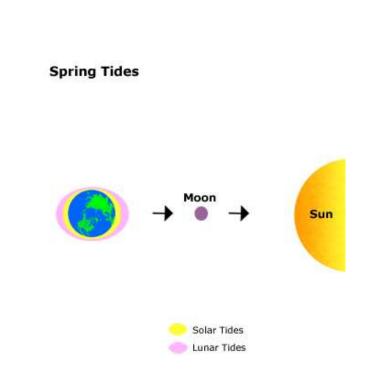
International Great Lakes Datum 1985 (IGLD85)

International Great Lakes Datum 1985 (IGLD85)

Great Lakes OHWM and LWD (meters)


	OHWM	OHWM	LWD	LWD
	IGLD 1985	IGLD 1955	IGLD 1985	IGLD 1955
Lake Superior	183.8	183.5	183.2	182.9
Lake Michigan	177.2	177.0	176.0	175.8
Lake Huron	177.2	177.0	176.0	175.8
Lake St. Clair	175.6	175.4	174.4	174.2
Lake Erie	174.8	174.6	173.5	173.3
Lake Ontario	75.4	75.2	74.2	74.0

POLL QUESTION

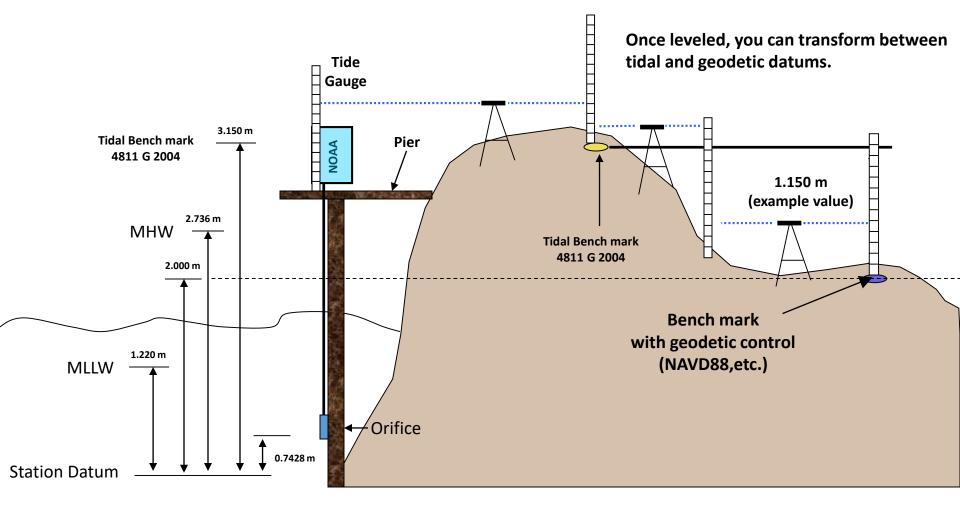

Tidal Datums

- A tidal datum is a standard elevation based on some phase of the tide that is used as a reference to measure water levels.
 - Nautical charting
 - Shoreline mapping
 - Bathymetric mapping
 - Boundary delineations
- These are local datums and cannot be applied to different areas because of differing hydrographic characteristics.
- Tidal epoch is derived using an averaging technique for a specific time period of 19 years. The current epoch is 1983-2001.
- Most tidal datums are referenced to fixed points called benchmarks.

Source: Tidal Datums and Their Applications

National Tidal Datum Epoch

- A specific 19-year period that includes the longest periodic tidal variations caused by the astronomic tide-producing forces
- Averages out long-term seasonal meteorological, hydrologic, and oceanographic fluctuations
- Provides a nationally consistent tidal datum network
- The National Water Level Observation Network (NWLON) provides the data required to maintain the epoch and make primary and secondary determinations of tidal datums


Tidal Benchmarks

- A benchmark is a fixed physical object or mark used as a reference for a datum.
- A tidal benchmark is a mark near a tide station to which the tidal datums are referenced.
- Most tidal benchmarks have an orthometric height maintained by the National Geodetic Survey (NGS), and have tidal information maintained by the CO-OPS.
- Visit the NGS or CO-OPs website to Retrieve information about tidal benchmarks.

	Bench Mark Dat	a Sheets	
	Click <u>HERE</u> for printal		
	U.S. DEPARTMENT OF	COMMERCE	
Nat	ional Oceanic and Atmosph		
Terrar Devel	National Ocean S	ervice	-
Datums Page			Page 1 of 4
Station ID: 8729868		PUBLICATION DA	LTE: 02/05/2004
	LA, NAVAL AIR STATION	A STREET STREET AND A STREET	
FLORIDA			
NOAA Chart: 11382		Latitude:	30° 20.7' 1
USGS Quad: FORT BA	RRANCAS	Longitude:	87° 16.4' %
Station, proceed 2. turn left and proce then turn right and kvenue, then turn r Building No. 75 on	bench marks from the main 33 km (1.45 mi) SE on Mur ed east on Saufley Street proceed south on East iv ight and proceed 0.40 km the south side of Dallas s ivenue and the sea wall	ry Boulevard to Sauf for 0.5 km (0.3 mi) enue for 0.5 km (0.3 (0.25 mi) west on Dai kvenue. The bench mo	ley Street, then to East Avenue, mi} to Dallas llas Avenue to arks are located
Station, proceed 2. turn left and proce then turn right and Avenue, then turn r Building No. 75 on in area along Dalla	33 km (1.45 ml) SE on Hur ed east on Saufley Street proceed south on East kw ight and proceed 0.40 km	ry Boulevard to Sauf for 0.5 km (0.3 mi) enue for 0.5 km (0.3 (0.25 mi) west on Dai kvenue. The bench mo . The tide gage and	ley Street, then to East Avenue, mi} to Dallas llas Avenue to arks are located
Station, proceed 2. turn left and proce then turn right and Avenue, then turn r Building No. 75 on in area along Dalla	33 km (1.45 mi) SE on Hur ed east on Saufley Street proceed south on Tast kw ight and proceed 0.40 km the south side of Dallas; s kvenue and the sea wall	ry Boulevard to Sauf for 0.5 km (0.3 mi) enue for 0.5 km (0.3 (0.25 mi) west on Dai kvenue. The bench me . The tide gage and No. 75.	ley Street, then to East Avenue, mi} to Dallas llas Avenue to arks are located
Station, proceed 2. turn left and proce then turn right and kvenue, then turn r Building No. 75 on in area along Dalla located on a conrre	33 km (1.45 mi) SE on Hur ed east on Saufley Street proceed south on East kw ight and proceed 0.40 km the south side of Dallas s kvenue and the sea wall te dock south of building	ry Boulevard to Saufi for 0.5 km (0.3 mi) enue for 0.5 km (0.3 (0.25 mi) sent on Dai kvenue. The bench m kvenue. The bench m to the gage and No. 75.	ley Street, then to East Avenue, mi} to Dallas llas Avenue to arks are located
Station, proceed 2. turn left and proce then turn right and kvenue, then turn r Building No. 75 on in area along Dalla located on a conrre	33 km (1.45 mi) 3E on Hur ed east on Saufley Street proceed south on East kw ight and proceed 0.40 km the south side of Dallas s kwenne and the sea wall te dock south of building IIDAL BEHC	ry Boulevard to Sauf for 0.5 km (0.3 mi) enue for 0.5 km (0.3 (0.25 mi) west on Da kvenue. The bench me . The tide gage and No. 75. H MARKS : 7.792 K 9 1918	ley Street, then to East Avenue, mi} to Dallas llas Avenue to arks are located
Station, proceed 2. turn left and proce then turn right and kvenue, then turn r Building No. 75 on in area along Dalla located on a concre	33 km (1.45 mi) SE on Hur ed east on Saufley Street proceed south on East kw ight and proceed 0.40 km the south side of Dallas s kvenue and the sea wall te dock south of building I I D A L B E H C DMARY BENCH MARK STAMPING	ry Boulevard to Sauf for 0.5 km (0.3 mi) enue for 0.5 km (0.3 (0.25 mi) west on Da kvenue. The bench me . The tide gage and No. 75. H MARKS : 7.792 K 9 1918	ley Street, then to East Avenue, mi} to Dallas llas Avenue to arks are located
Station, proceed 2. turn left and proce then turn right and divenue, then turn r Building No. 75 on in area along Dalla located on a concre PR MCMUMENTATION: AGENCT:	33 km (1.45 mi) SE on Hur ed east on Saufley Street proceed south on East kw ight and proceed 0.40 km the south side of Dallas s kvenue and the sea wall te dock south of building T I D A L B E H C IMARY BENCH MARK STAMPING DESIGNATION: Bench Mark disk US Coast and Geodet	ry Boulevard to Saufi for 0.5 km (0.3 mi) enue for 0.5 km (0.3 (0.25 mi) west on Dai kvenue. The bench mu . The tide gage and No. 75. H MARKS : 7.792 K 9 1918 K 9	<pre>ley Street, then to East Avenue, mi) to Dallas llas Avenue to arks are located staff were VMM#: 10281</pre>
Station, proceed 2. turn left and proce then turn right and Avenue, then turn r Building No. 75 on in area along Dalla located on a concre	33 km (1.45 mi) SE on Hur ed east on Saufley Street proceed south on East kw ight and proceed 0.40 km the south side of Dallas s kvenue and the sea wall te dock south of building T I D A L B E H C IMARY BENCH MARK STAMPING DESIGNATION: Bench Mark disk US Coast and Geodet	ry Boulevard to Saufi for 0.5 km (0.3 mi) enue for 0.5 km (0.3 (0.25 mi) west on Dai kvenue. The bench mu . The tide gage and No. 75. H MARKS : 7.792 K 9 1918 K 9	<pre>ley Street, then to East Avenue, mi) to Dallas llas Avenue to arks are located staff were VMM#: 10281</pre>
Station, proceed 2. turn left and proce then turn right and Avenue, then turn r Building No. 75 on in area along Dalla located on a concre PR NCMUMENTATION: AGENCT: SETTING CLASSIFICAT	33 km (1.45 mi) SE on Hur ed east on Saufley Street proceed south on East kw ight and proceed 0.40 km the south side of Dallas s kvenue and the sea wall te dock south of building I I D A L B E H C IMARY BENCH MARK STANPING DESIGNATION: Bench Mark disk US Coast and Geodet ION: Brick wall	ry Boulevard to Sauf for 0.5 km (0.3 mi) enue for 0.5 km (0.3 (0.25 mi) west on Dai Verenue. The bench . The tide gage and No. 75. H MARKS : 7.792 K 9 1918 K 9 ic Survey (USC6GS)	ley Street, then to East Avenue, mi) to Dellas llas Avenue to arks are located staff were yME#: 1026; <u>PID#: B0181</u>
Station, proceed 2. turn left and proce then turn right and avenue, then turn r Building No. 75 on in area along Dalla located on a conrre PR MCMUMENTATION: AGENCT: SETTING CLASSIFICAT The primary bench m	33 km (1.45 mi) SE on Hur ed east on Saufley Street proceed south on East kw ight and proceed 0.40 km the south side of Dallas s kvenue and the sea wall te dock south of building T I D A L B E H C IMARY BENCH MARK STAMPING DESIGNATION: Bench Mark disk US Coast and Geodet	ry Boulevard to Sauf for 0.5 km (0.3 mi) enue for 0.5 km (0.3 mi) enue for 0.5 km (0.3 kvenue. The bench m . The tide gage and No. 75. H MARKS : 7.792 K 9 1918 K 9 ic Survey (USCoGS)	ley Street, ther to East Avenue, mi) to Dallas las Avenue to arks are locater staff were VME: 1028: PID#: 10281 PID#: BG1813

Example of a Bench Mark Sheet that provides descriptive information for the selected tide station.

Geodetic Tie to Tidal Datums

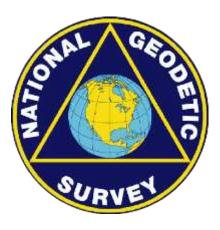
Vertical Datum Transformations

- The WHY factor?
 - Creating consistency between elevation values results in a more accurate surface model. Transformations are performed to establish a consistent spatial framework among datasets.

- Example:
 - **Topographic** data are commonly referenced to an orthometric datum (NAVD88)
 - **Bathymetric** data commonly reference a tidal datum (MLLW)
- Working with multiple elevation datasets requires the user to define a common vertical datum so that the elevation values are consistent.
- Tools are available to perform these transformations.
 Conversions need to be done separately for horizontal datums and vertical datums

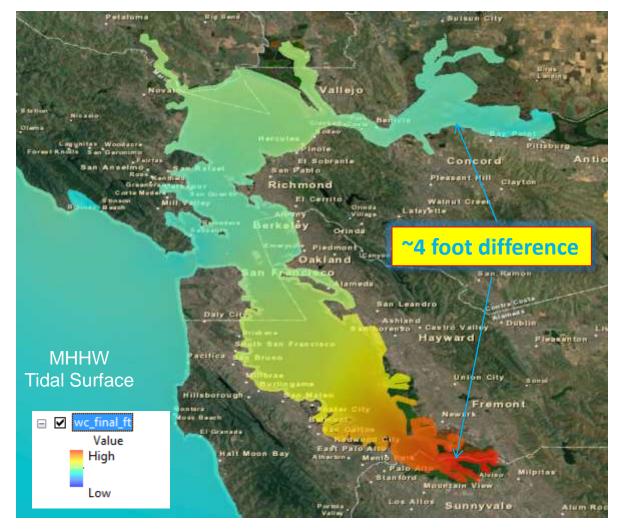
Vertical Datum Transformation Methods

- VERTCON Translates between NGVD29 and NAVD88
- **CORPSCON** Converts between horizontal and vertical (orthometric) datums
- VDATUM Uses a detailed hydrodynamic model to translate between ellipsoidal, orthometric, and tidal datums
- Harmonic Constant Datum Method Estimates tidal datums using major tidal influences and tidal benchmark data
- Linear Interpolation Estimates tidal datums using tidal observations at benchmarks and interpolating between tide stations
- Integration with No Conversion No relationship between datums is established; datums assumed to be equal

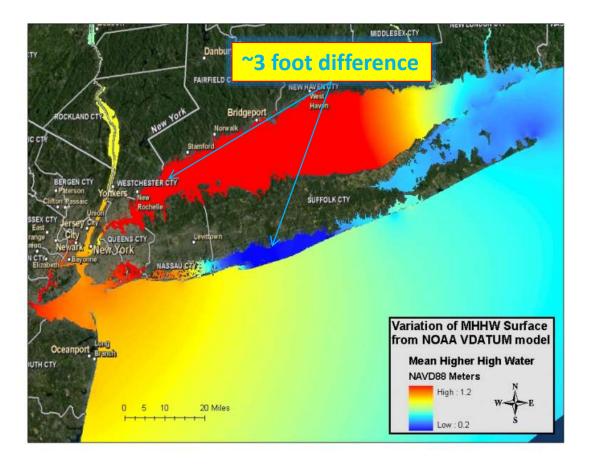

NGS Tidal and Orthometric Elevations Tool Kit

- Will display tidal and orthometric elevations of a specific survey control mark.
- Displayed will be the differences between the published NGS's NAVD88 and NGVD29, and the CO-OPS' MLLW datums.
- User can enter "PID" (control mark identifier) or latitude and longitude.
- Entering lat/long coordinates will generate a list of PIDs within a 25 mile radius.
- NGS Geodetic Tool Kit: Tidal and Orthometric Elevations – www.ngs.noaa.gov/TOOLS/

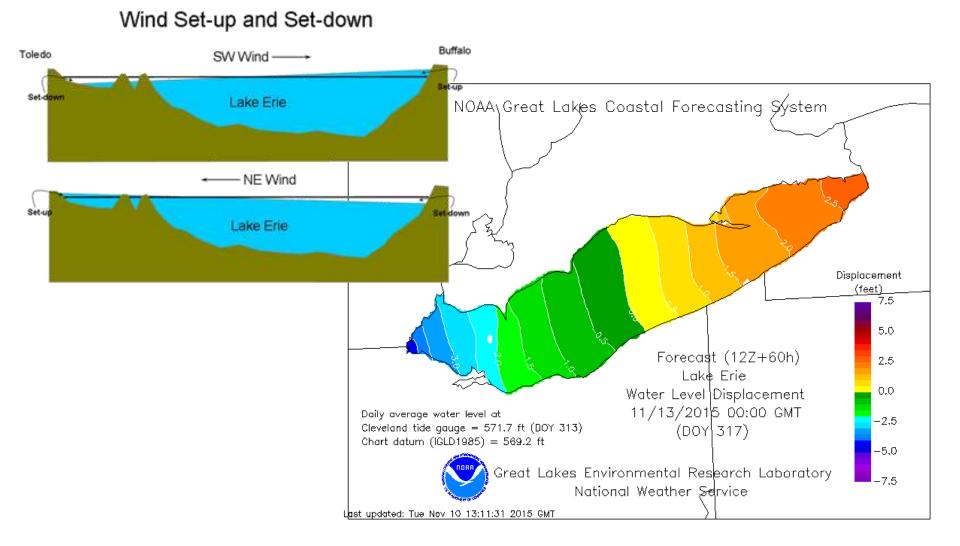
ELEVAT	ION INFOR	MA	TION	
PID: VM: STATION ID: EPOCH: DATE:	1983-2001	-	er 25, 2013	2:30:58 PM EST
2				(0.364 meters) (0.354 meters)
1	MSL NAVD88 NGVD29 MLW	= = =	0.58 feet 0.33 feet 0.09 feet 0.04 feet	(0.183 meters) (0.177 meters) (0.100 meters) (0.028 meters) (0.011 meters) (0.000 meters)
0				


National Spatial Reference System (NSRS)

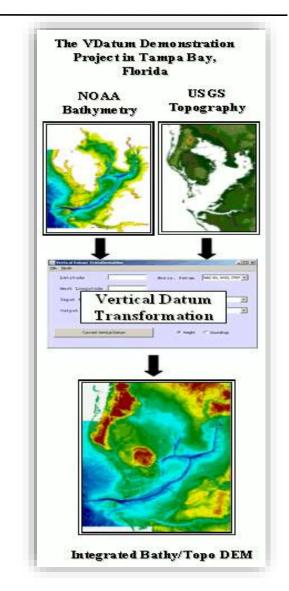
- A consistent national coordinate system that specifies latitude, longitude, height, scale, gravity, and orientation throughout the nation
- Managed by the NOAA National Geodetic Survey
- NSRS consists of the following:
 - A consistent, accurate national shoreline
 - National Continuously Operating Reference Stations (CORS)
 - Network of permanently marked points
 - Set of accurate models describing the geophysical processes affecting spatial measurements



www.ngs.noaa.gov


The Ocean Is Not a Flat Surface (especially in bays and estuaries)

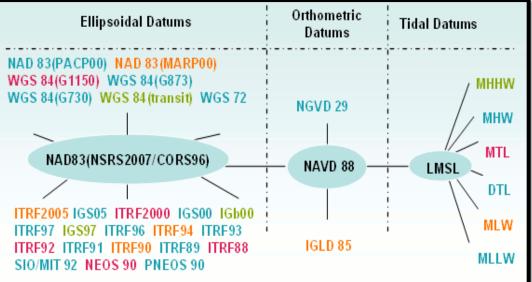
The Ocean Is Not a Flat Surface (especially in bays and estuaries)


The Great Lakes are Not Flat Surfaces Either

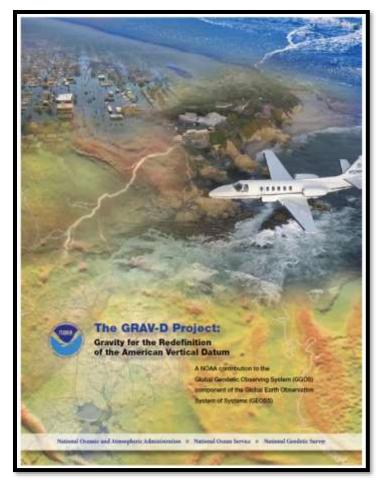
Datum Transformations

Using VDatum to convert between Tidal, Orthometric, and Ellipsoidal datums

- Vertical Datum Transformation Tool
- Developed jointly by NOAA's Office of Coast Survey and NGS
- Provides a method to accurately combine topographic (orthometric) and bathymetric (tidal) elevation data
- Application is limited to the region it was developed for
- Download Software and Documentation
 - vdatum.noaa.gov/welcome.html


Datum Transformations

How Does VDatum Work?


- Java Runtime Environment (JRE) must be installed to run VDatum (*http://java.sun.com/*)
- VDatum can operate in an individual or batch mode
- User input includes: Horizontal Datum, Input Vertical Datum, Output Vertical Datum, Units of original vertical datum, Type of elevation data

Havizsietai: totori	mation	Source			Target	
Sahare:	 Janacovski se konstrukcijski podpisov podpisovanje se se		Am. +	NAD93(2)	111/2007/CORSHINARI	- North Am
Coor. System:	Geographic Dattude, Kongilade)		Geograp	ec (lattlude, longitude)		
wit			14	1		1.0
Carrie:		1				1.0
wit:	imeter (m) # Height GEOID model	O Sanding	(•) -	imeter (m i Heigh GEOR	Q S	aunding (*
Point Convers	ASCR File Co	eversion File Conver	rsios			
	Input	Cite Report	1	Cetp		
Longitude:		to DMS.			Langitude:	
Hongit:	TT to Day		Reset Lattude			
margan.					- margine	

Gravity for the Redefinition of the American Vertical Datum (GRAV-D)

http://www.ngs.noaa.gov/GRAV-D/

GRAV-D is a proposal by the National Geodetic Survey to re-define the vertical datum of the US by 2022

- A high-resolution "snapshot" of gravity in the US
 - predominantly airborne campaign, a cost of ~39 Million dollars
- A low-resolution "movie" of gravity changes
 - primarily a terrestrial campaign and will mostly encompass episodic re-visits of absolute gravity sites
- Regional partnership surveys
 - NGS seeks to collaborate with local (governmental, commercial, and academic) partners throughout the GRAV-D project.

CLOSING COMMENTS

- To suggest future CTP web meeting topics, please contact Alan Lulloff at *alan@floods.org*
- ... or type a suggested topic into the Questions panel today
- CFM CECs through ASFPM will be automatically applied. If you *require* a Certificate of Attendance, please contact *gisjason@floods.org*
- Follow-up email will be sent in about a week

Thank You for Joining Us!