

System-wide Approach to Flood Risk Management Using HEC-WAT

Sam Crampton, P.E., CFM

A System Wide Approach to Watershed Management

- What is a system wide approach?
- Why is a system wide approach needed?

What is HEC-WAT

- Model integration tool to support water resources studies
- Allows a comprehensive system-wide approach
- Advanced tools for flood risk assessment
- Can facilitate uncertainty analysis
- Catalog and compare project alternatives
- System performance analysis

HEC-WAT

- Integrates models and provides tools used during the analytical process
 - Hydrology
 - Reservoirs operations
 - Hydraulics
 - Economics
 - Life Safety
- Event or Period of Record simulations

Source: USACE

Consequence Assessment Using HEC-FIA

- GIS-based software
- Uses spatial data from a HEC-RAS model (depth grids, hydrograph, cross sections, etc.)
- Structure inventory can be developed using data from HAZUS or user defined inventory
- Program gives a statistical estimate of direct damages and loss of life to individual structures

Life Safety Variables

- Warning System Curves
 - Default lowest curve is the emergency broadcast system
- Mobilization curves
 - Default is a maximum of 98% of population mobilized – Can be changed
- Evacuation velocity
 - Structure to the nearest safe zone ~10 mph
- Warning time relative to the flood inundation

Risk and Project Performance

- Risk = Probability x Consequences (x Performance)
- Uncertainty represents the imprecision of parameters and mathematical functions used

- ·

AEP Grid Compute Method

AEP Database

0	0	2	2	2	0	0	0
0	0	0	2	2	2	0	0
0	0	0	0	2	2	2	0
0	0	0	0	2	2	2	0
0	0	0	0	2	2	2	0
0	0	0	0	2	2	2	0
0	0	0	0	0	2	2	2
0	0	0	0	0	2	2	2
0	0	0	0	2	2	2	0
0	0	0	2	2	2	0	0
0	0	2	2	0	2	0	0
0	0	2	2	0	2	0	0
0	0	2	2	0	2	0	0
0	0	0	2	2	2	0	0
0	0	0	2	2	2	0	0
0	0	2	2	2	0	0	0
0	2	2	2	0	0	0	0

Number of events

0

Source: USACE

AEP= grid value/number of events

Economic Performance

 Distribution of Expected Annual Damage (or Damage Reduced)

Project 1 – Higher reward, higher risk

~70% positive NB

Project 2 – Lower reward, lower risk

~90% positive NB

Source: USACE

Amite River Watershed, LA

- 1,800 square mile watershed
- 1,200 miles of FEMA mapped floodplains
- Mild slopes
- Significant unconfined flooding sources

Amite River Project Background

- August 2016 Flood
 - Less than 0.2% Annual Exceedance Probability in Denham Springs (>500 yr)
 - Nearly 5ft higher flood stage than previous flood record
 - Extensive economic losses estimated at \$8.7B
 - At least 13 lives lost
 - Increased interest in flood mitigation

Source: Civil Air Patrol

Project Goals

- Provide Stakeholders with the tools to assess flood risks and project impacts on a watershed scale through the development of:
 - Watershed scale floodplain models to assess flood severity; and
 - Integrated economic and life safety models to assess consequences
- Tools to meet requirements of new state law and 44CFR §60.3

Project Applications

- Model will be a common framework for:
 - Assessing the impacts of proposed projects:
 - System wide impacts of new levees, dams, dredging, channelization etc.
 - Assessing the effectiveness of community planning
 - System wide impacts of future land use plans and stormwater management practices
 - Ensuring that flood risk management decisions do not result in adverse impacts

Tiered Approach to Study Detail

Risk is a function of:

Probability × Consequences

- Risk is non-uniform throughout basin
- Nearly 1,200 linear miles of mapped flooding sources
- Putting money where the risk is
- Scalable solution
- Developed considering end-users

Model Overview

- Nearly 1,200 miles of floodplain mapped including rivers, creeks, canals and bayous
- Scalable system
 using no-cost public
 domain software by
 the USACE
- New aerial topography LiDAR (1800 sq. mi.)

How will it work?

Integrated approach to H&H, Risk Assessment and Project Alternative

Analysis

Hydrologic and Hydraulic Models

What if?

- What are the project impacts of?
 - Building a new reservoir
 - Raising a road embankment or levee
 - Opening up a bridge
 - Diverting flows to another watershed
 - Dredging and/or snagging the river

 Are additional measures needed to offset adverse impacts?

HEC-WAT Summary for Amite Study

- Models can be run from single interface, or...
 - Can be extracted and run standalone
- Effective way to manage models
- Advanced tools available for flood risk analysis will be invaluable for future assessments
- Providing all stakeholders with the tools to assess flood risk and make informed floodplain management decisions
 - Improved efficiency making a systemwide modeling approach cost effective and feasible

Sweetwater Creek FRM Study

Sweetwater Creek Flood Risk Management Study

- One of the first corps implementations of HEC-WAT
- Quantify flood risks in the Sweetwater Creek
 Watershed and to evaluate potential alternatives to reduce that risk
- Planning level HEC-HMS and locally leveraged HEC-RAS
- Collaboration between Dewberry, USACE, & local stakeholders

Flood Risk Alternatives

- WAT provided framework for combining and evaluating various alternatives in a comprehensive systemwide approach linking multiple hydrologic and hydraulic models
 - Retention basins
 - Diversions
 - Dredging
 - Channelization
- Validated results with standalone HMS/RAS

Alternative Constraints

- Limited undeveloped land with large storage potential
- No adverse downstream impacts

No adverse impacts or structural measures to impact historical

Sweetwater Creek Mill

 Environmental & Cultural Resource Protection

Alternative Manager

 Evaluated 16 different combinations of structural and non-structural measures including new or rehabilitated detention structures, channel modifications, creek diversions and structure relocations.

File Edit View														
A 🗘 🏃 😝	4	R												
Alternatives		Analysis Periods												
		05yr_event		10yr_event		25yr_event		50yr_event		100yr_event		200yr_event	500yr_e	event
	HMS	(RUN)RUN_Ex05y	▼ HN	S (RUN)RUN_Ex10y	HMS	(RUN)RUN_Ex25y ▼	HMS	(RUN)RUN_Ex50y	HMS	(RUN)RUN_Ex10	HMS	(RUN)RUN_Ex20 ► HI	IS (RUN)RUN	V_Ex50 ▼
	RAS	05yr_ARF14	▼ RA	10yr_ARF14	r RAS	25yr_ARF14 -	RAS	50yr_ARF14 -	RAS	100yr_ARF14 ▼	RAS	200yr_ARF14 RA	S 500yr_ARF	14
	HMS	(RUN)RUN_FUT0	▼ HN	S (RUN)RUN_FUT1	- HMS	(RUN)RUN_FUT2 ▼	HMS	(RUN)RUN_FUT5	HMS	(RUN)RUN_FUT1 ▼	HMS	(RUN)RUN_FUT2 H	IS (RUN)RUN	N_FUT5 💌
	RAS	05yr_FUTURE	▼ RA	3 10yr_FUTURE	r RAS	25yr_FUTURE -	RAS	50yr_FUTURE -	RAS	100yr_FUTURE ▼	RAS	200yr_FUTURE RA	S 500yr_FUT	TURE 💌
I AI I 3: Allefall Divareion	HMS	(RUN)RUN_FUT0	▼ HN		- HMS	(RUN)RUN_FUT2	HMS	(RUN)RUN_FUT5	HMS		HMS	(RUN)RUN_FUT2 ► HI		N_FUT5 💌
	RAS	ALT 3_Austell Div	▼ RA	S ALT 3_ Austell Div	r RAS	ALT 3_ Austell Div	RAS	ALT 3_ Austell Div	RAS	ALT 3_Austell Div ▼	RAS	ALT 3_ Austell Div RA		stell Div
IALL 4 ChannelModification —	HMS	(RUN)RUN_FUT0	▼ HN	S (RUN)RUN_FUT1	- HMS	(RUN)RUN_FUT2 ▼	HMS	(RUN)RUN_FUT5	HMS	(RUN)RUN_FUT1 ▼	HMS	(RUN)RUN_FUT2 HI	IS (RUN)RUN	N_FUT5 🔽
	RAS	ALT4_5yr	▼ RA		r RAS	ALT4_25yr	RAS	ALT4_50yr	RAS		RAS	ALT4_200yr ▼ RA		₩.
	HMS	(RUN)RUN_FUT0	▼ HN		HMS	(RUN)RUN_FUT2 ▼	HMS	(RUN)RUN_FUT5	HMS		HMS	(RUN)RUN_FUT2 ▼ HI		
	RAS	ALT 3A_Austell Di	▼ RA		r RAS	ALT 3A_ Austell Di	RAS		RAS		RAS	ALT 3A_ Austell Di 🔻 RA	_	
IΔII? Pino Iako ⊢	HMS	(RUN)RUN_FUT0	▼ HN	· / -	HMS	(RUN)RUN_FUT2 ▼	HMS	(RUN)RUN_FUT5	HMS		HMS	(RUN)RUN_FUT2 ▼ HI		
	RAS	BrownRd_5yr	▼ RA		r RAS	BrownRd_25yr ▼	RAS		RAS		RAS	BrownRd_200yr ▼ RA		
ALT 9_PineLake&Diversion	HMS	(RUN)RUN_FUT0	▼ HN		HMS	(RUN)RUN_FUT2	HMS	· / -	HMS	V	HMS	(RUN)RUN_FUT2 ▼ HI		
	RAS	Alt9_Pine_Diversi	▼ RA		r RAS	Alt9_Pine_Diversi ▼	RAS		RAS		RAS	Alt9_Pine_Diversi ▼ RA		
ALI_5A_Multibasin Retention	HMS	(RUN)RUN_FUT0	▼ HN	<u> </u>	HMS	(RUN)RUN_FUT2	HMS		HMS	_	HMS	(RUN)RUN_FUT2 ▼ HI		
	RAS	ALT_5A_5yr	▼ RA		r_RAS	ALT_5A_25yr _	RAS		RAS		RAS	ALT_5A_200yr		
ALT_5B	HMS	(RUN)RUN_FUT0	▼ HN		HMS	(RUN)RUN_FUT2 ▼	HMS		HMS		HMS	(RUN)RUN_FUT2 ▼ HI		
	RAS	ALT_5B_5yr	▼ RA		RAS	ALT_5B_25yr	RAS		RAS		RAS	ALT_5B_200yr ▼ RA		
	HMS	(RUN)RUN_FUT0	▼ HN		HMS	(RUN)RUN_FUT2 ▼	HMS		HMS		HMS	(RUN)RUN_FUT2 ▼ HI		
	RAS	ALT_5C_5yr	▼ RA		r_RAS	ALT_5C_25yr	RAS		RAS		RAS	ALT_5C_200yr ▼ RA		
ALT 5D_Multibasin Retention R	HMS	(RUN)RUN_SC1&	▼ HN		• HMS	(RUN)RUN_SC1& ▼	HMS	· / _	HMS		HMS	(RUN)RUN_SC1& ► HI	. ,	
	RAS	ALT_5D_5yr	▼ RA		RAS	ALT_5D_25yr	RAS		RAS		RAS	ALT_5D_200yr ▼ RA		
	HMS	(RUN)RUN_SC1&	▼ HN		HMS	(RUN)RUN_SC1&	HMS	(HMS	V	HMS	(RUN)RUN_SC1& ► HI		
	RAS	ALT 5F 20pct	▼ RA	S ALT 5F 10pct	RAS	ALT 5F 4pct ▼	RAS	ALT 5F 2pct ▼	RAS	ALT 5F 1pct ▼	RAS	ALT 5F 0 5pct ▼ RA	S ALT 5F 0	2pct ▼
	1													

Existing Pine Valley Lake Dam

Sweetwater Creek Channelization

- 14.2 miles of channelization through Austell, GA
- Estimated excavation volume of 2.5 million cubic yards

Sweetwater Creek Diversion

- 1.5 mile diversion
- Open channel, cut and cover tunneling, and bored tunnel sections
- Would require at least five 12' RCP under 165' of vertical elevation change
- Resulted in increased flows and water surface elevations downstream of Austell

On request of city investigated
 18 mile diversion to the
 Chattahoochee River

SC1 Detention Structure

- Initially located at Baker's Bridge Road providing 1,800 ac-ft of potential storage
- Revised location just
 1 mile upstream
 provided a total
 potential storage of
 7,600 ac-ft
- Working on its own, this measure reduced the 100YR WSEL in Austell by 3.3'

Spillway Rendering

Aerial View of Site SC1

3D Rendering of Structure SC1

Tentatively Selected Plan (TSP)

 Non-Structural Approach - Relocation/Buyout alternative for 20 structures

HEC-WAT Summary for Sweetwater Creek FRM Study

- Integration of models was tediously initially, however once linked, benefits were recognized
 - Initially hit many bugs, however HEC has addressed many of these now
- HEC-WAT provided benefits when developing, running and assessing alternatives
- Systemwide, dynamic modeling approach was critical to recognize adverse impacts

Summary

- Impacts of individual projects can have a much wider system impact (positive and/or negative)
- System wide modeling can be a bit like:

```
1 + 1 = 4, if you are lucky!or1 + 1 = -4 if you are not so lucky!
```

- Critical to making risk informed decisions
- HEC-WAT continues to evolve with improved stability and tools to support system wide watershed analysis

