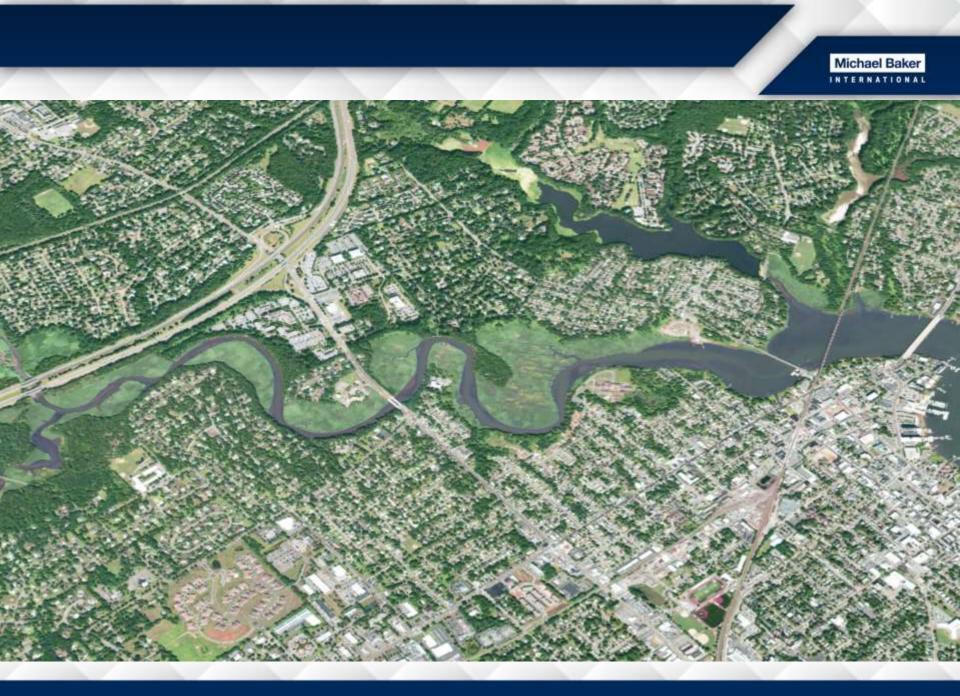


Regional Resilience Planning Grants Program Assistance

Craig Wenger, P.E., AICP, CFM, LEED GA



Priorities

- Holistic Planning
- Total Water Level Understanding
- Vulnerability Assessments Based on Assets

Michael Bake

Michael Baker

Program

The *Resilient NJ* program will provide funding and technical assistance to multi-municipal regions within the nine New Jersey counties most impacted and distressed by Superstorm Sandy, to undertake a comprehensive planning process. This program will help municipalities identify and address their vulnerabilities to increased coastal and riverine flood risk and other climate stressors.

Program

The program will provide grant funding for neighboring communities to develop and implement regional action plans that:

- Assess vulnerability to current and projected flooding, including permanent inundation, chronic and nuisance flooding, riverine and coastal flooding, and coastal storms and storm surge
- Identify locally significant and regionally shared critical assets
- Develop strategic and actionable mitigation actions to reduce flooding risk
- Understand and weigh the costs and benefits of specific actions
- Develop a strategic plan that reduces risk and provides a roadmap for implementation

Michael Bak

Why an Enhanced Riverine Analysis?

- CDBG-DR grants to date focused on oceanfront and bayfront communities
- Planning resources for inland communities dealing with riverine flooding are still needed
- Desire to incorporate projected future increases in rainfall and development trends

Assessment Methodologies

- Method A NJFHADF
- Method B River Systems 1D Base Level Engineering (BLE)
- Method C N.J.A.C. 7:13-3.5 (Method 5)
- Method D HEC-RAS 2D Rain on Grid

Michael Bal

Michael Baker

Pilot Study Area South Branch Rahway River Watershed Rahwa 27 Woodbridge Township Edison Township Metuchen Borough

Michael Baker

Pilot Study Area South Branch Rahway River Watershed – Sandy/Irene Impact

Michael Baker

Pilot Study Area South Branch Rahway River Watershed

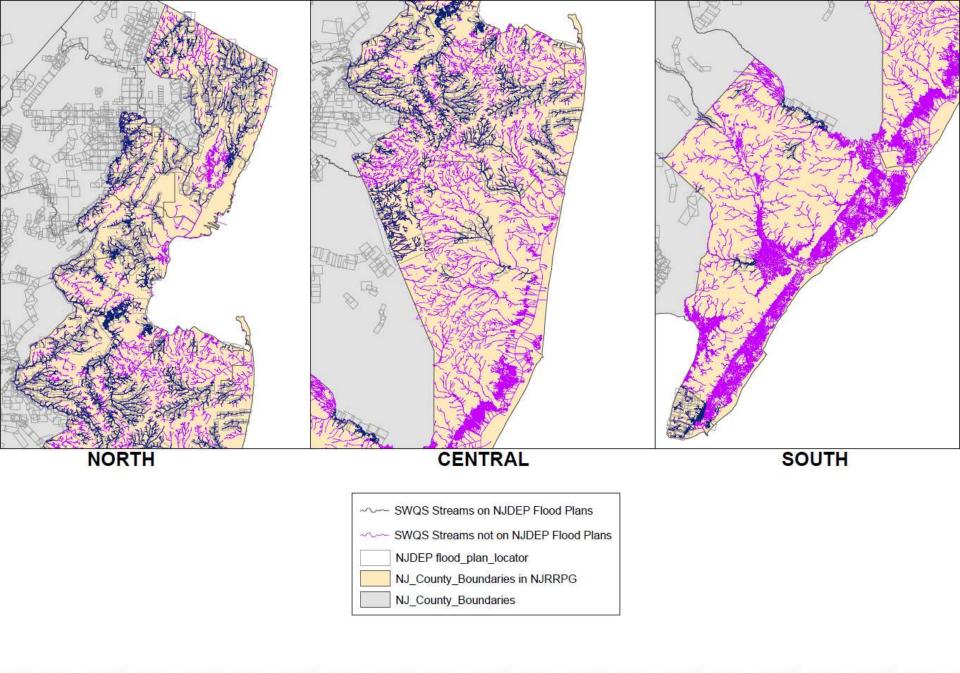
	Edison	Metuchen	Woodbridge	Rahway
Insurance Policies in Force as of 2015	351	53	592	97
Insurance Claims as of 2015	107	8	494	788

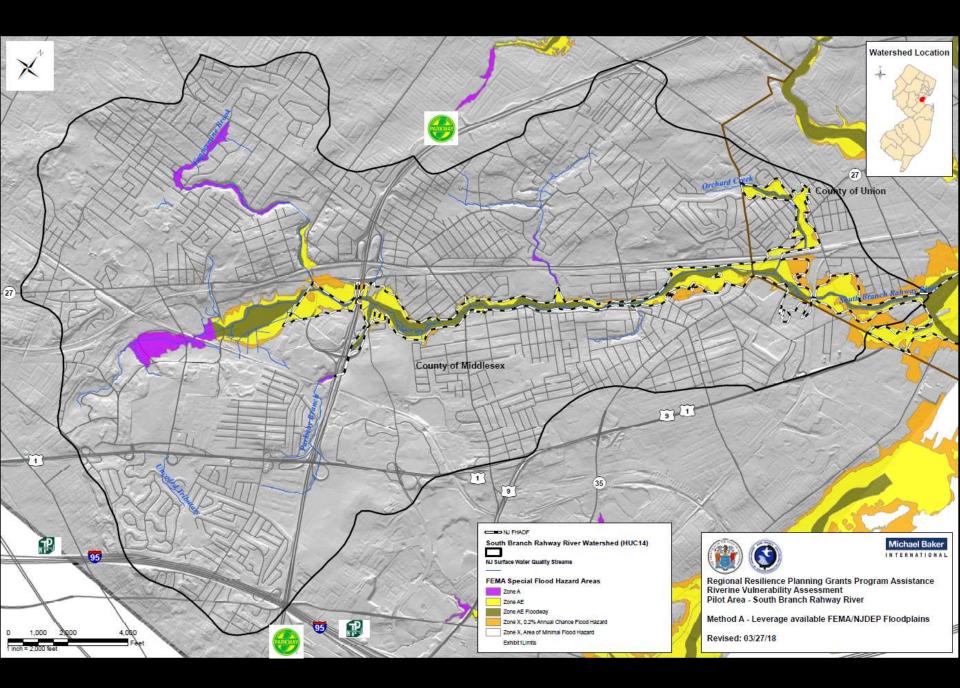
Method A – NJFHADF

Leverage New Jersey Flood Hazard Area Rules

- New Jersey Flood Hazard Area Design Flood = 100-yr Flow Rate plus 25%
- Intended to consider future when developing in/near floodplains
- In areas where models exist, will align studies with eventual permitting that will be required

BIET AND CREMENTIZATION DES ACORS SUM ELENCH, UPSTEAM OF THE GARGEN SAM PARKING NEURAD REAL TRANS TOR MARKING TRANSIT TRANSITIAL CEMES, TRA-DAR TOS CREMENTIZZATION OF RAWKYN BACKTAR MARKING TRANS OF THE GARBIN TRANSITIAL PARKING TRANSACT CONSTRUCTION PARKS, HICHOCREMUNTER CARENDE SUPPLIED BY TOWNER OF VICCOREDGE.

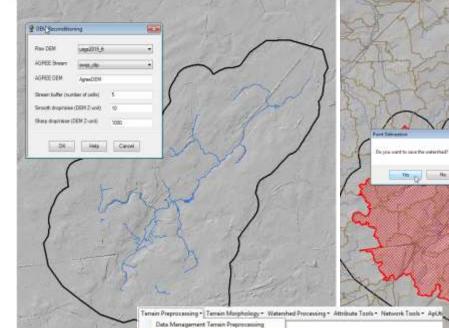

Chard p provine associates professional Concert & planning consultants SC gales of the wayne new ensey

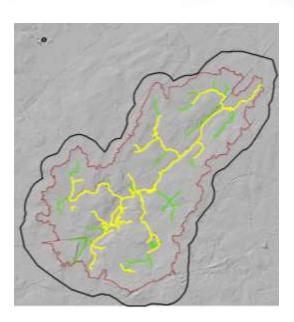

APPROXIMATE STALE

270 400 FLOODWAY-2 FEDERAL FLOOD FRINGE NOTE: 1. 1020 FT 6FT BASE CN NEX ASSN GEOSTIC MM COOTENUT STERM. 2. SHEW ACCT. 2. LIVE CONTROL RECOVER WHERE 2. LIVE CONTROL RECOVERY MAY REP ACTUAL LOCATION OF RECOVERY MAY REP ASSNCT RECOVERY MAY REP 5. MICH TO RECOVERY MAY REF 5. MICH TO RECOVERY MAY REF 5. MICH TO RECOVERY MAY REF

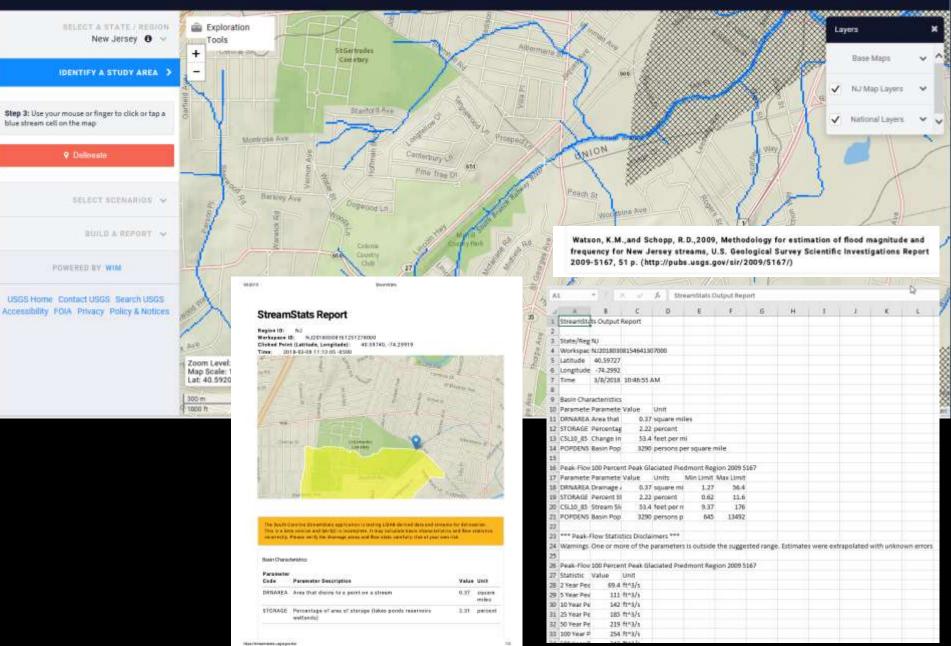
PLANS TOWNSHIP OF WOODBRIDGE, NI NIPOLESEX CO

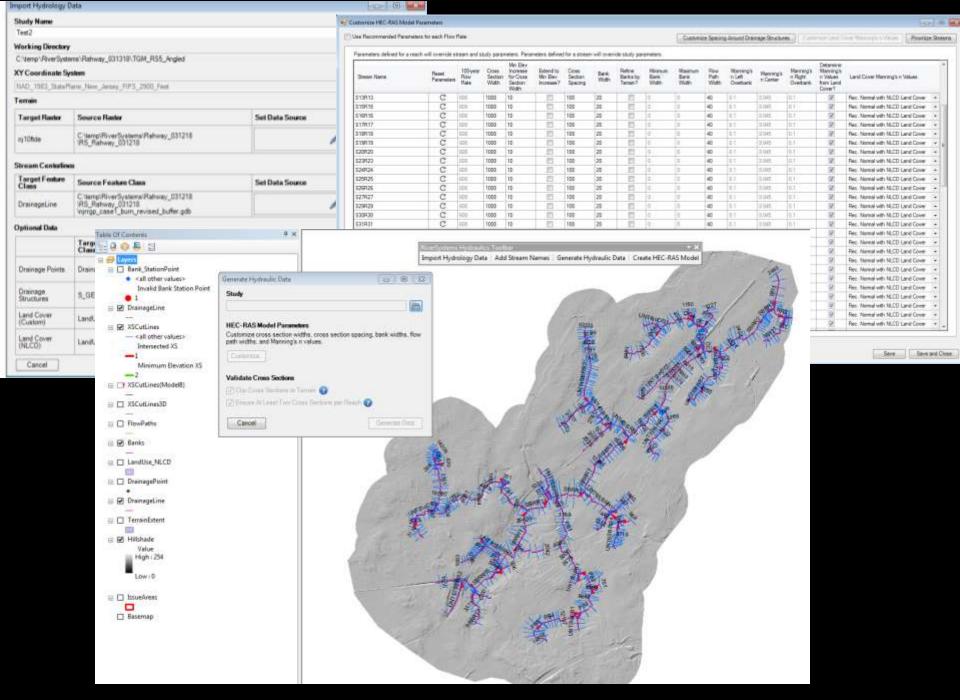
AND FLOOD HAZARD AREA

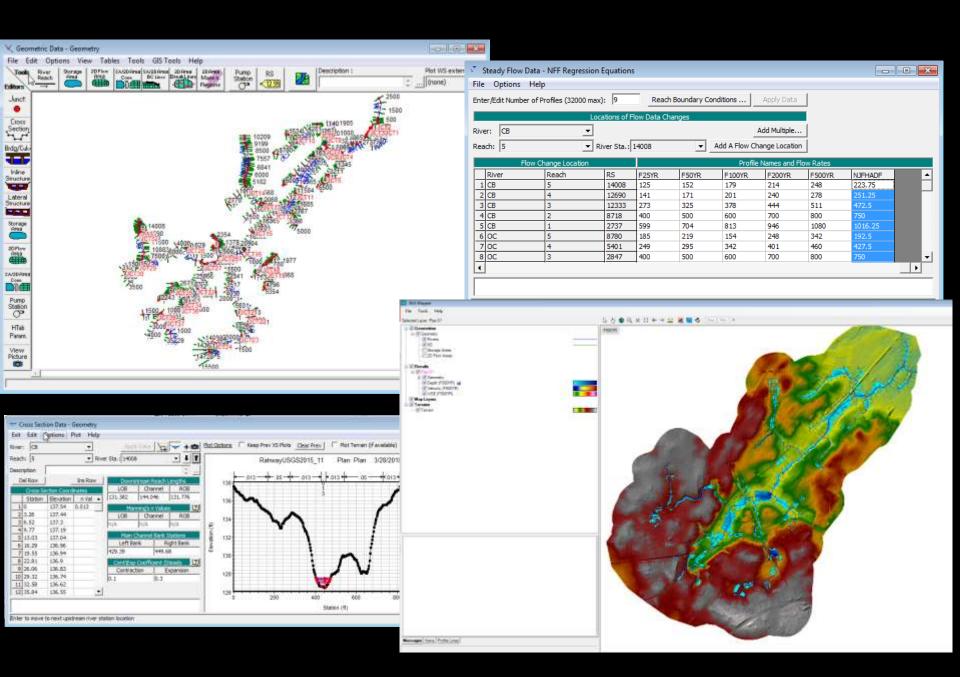

Michael Baker

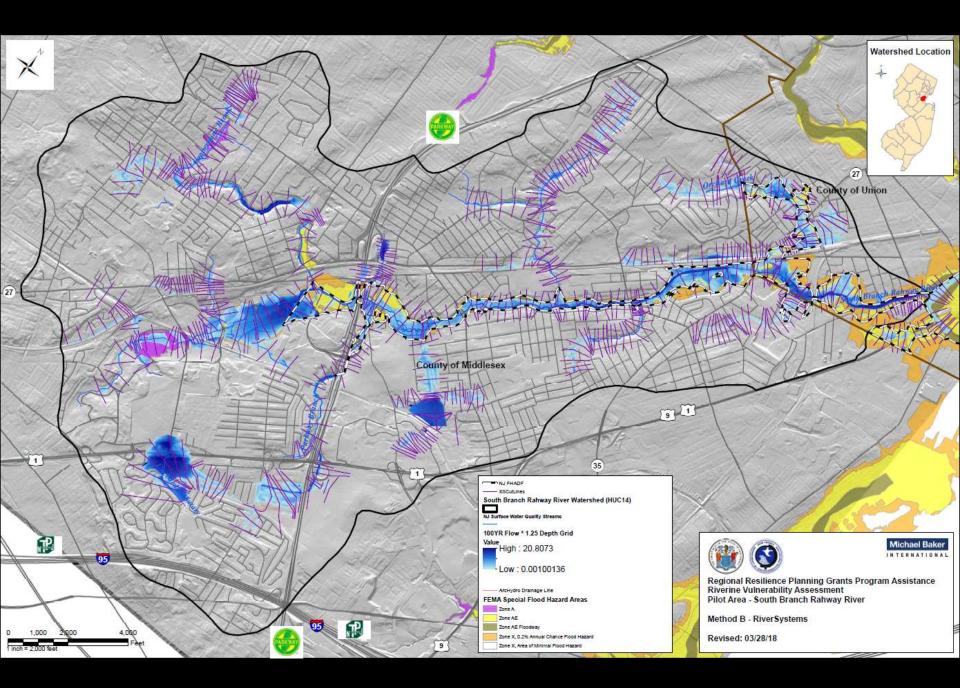

METHOD B – River Systems 1D BLE

- Model-based approach
- River Systems is a suite of GIS software modules created by MBI to automate different tasks to support flood studies: hydrologic and hydraulic (H&H) engineering, plus database, map, and report production
- The one-dimensional (1D) Base Level Engineering (BLE) module develops highly automated HEC-RAS hydraulic models from terrain, stream centerlines, and minimal user input


Michael Baker



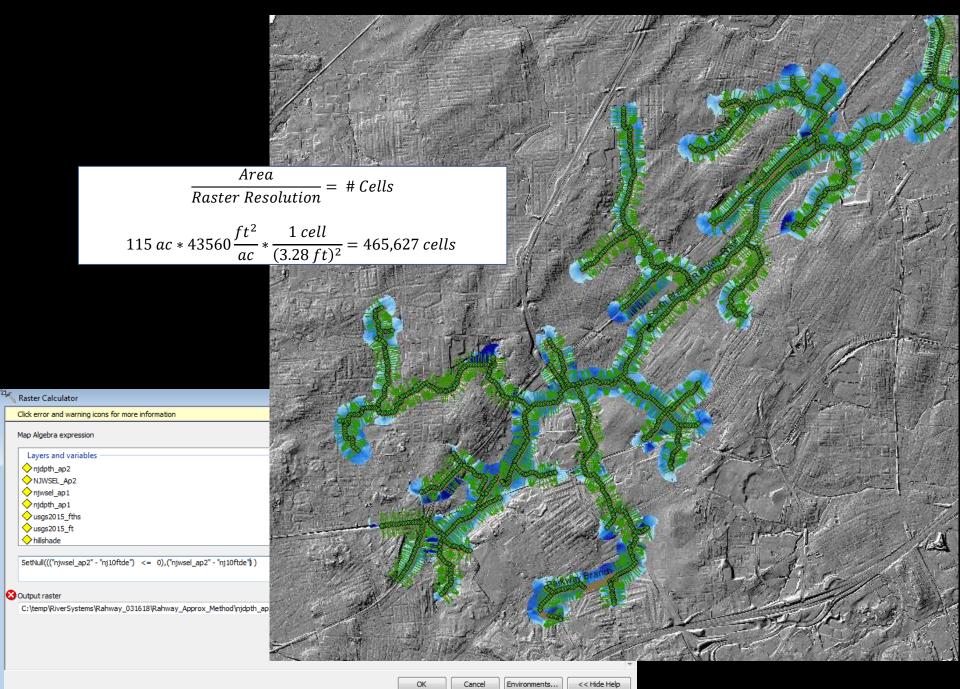


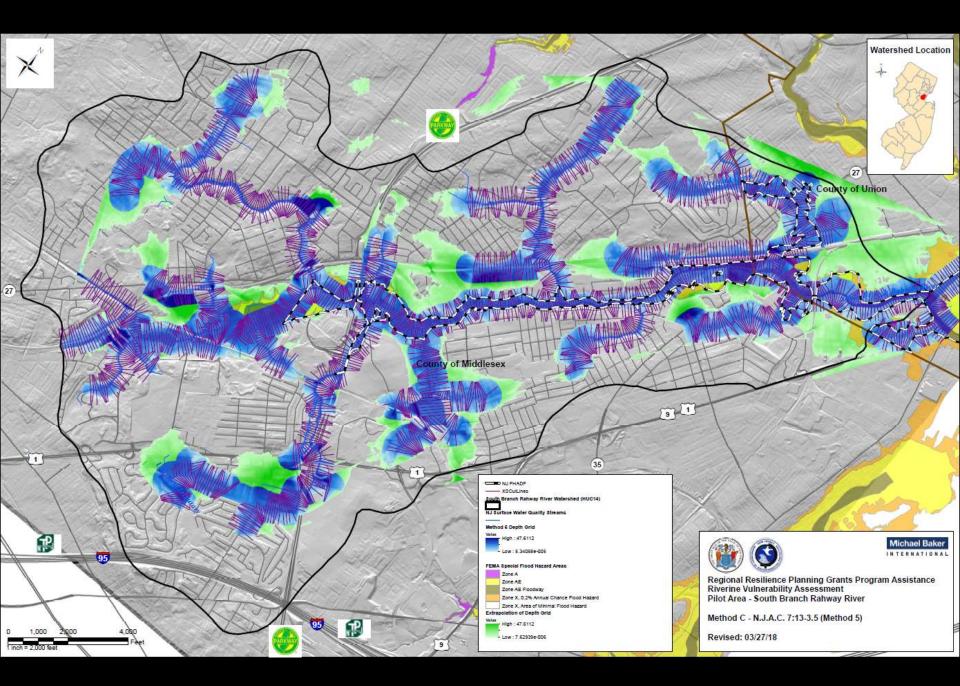

DEM Manipulation	+	Data Management DEM Manipulation	1			
Rew Direction Adjust Flow Direction in Sinks		Create Drainage Line Structures Create Sink Structures				
Adjust Flow Desction in Streams Adjust Flow Direction in Lakes		Level DEM DEM Reconditioning				
Flow Accumulation Stream Definition		Assign Stream Slope Burn Stream Slope				
Stream Segmentation Combine Stream Link and Sink Link	-	Build Walls Sink Proceesing Sink Evaluation				
Catchment Grid Delineation						
Catchment Polygon Processing Drainage Line Processing	Depression Evaluation Sink Selection					
Adjoint Catchment Processing		Fit Sinks				
Downage Point Processing Longest Flow Path for Catchments Longest Flow Path for Adjoint Catchments Accumulate Shapes	-	Till Slinks Ellipseks im a DEM	Sec. 1			
Slope	-1		C -			

StreamStats

Michael Baker

METHOD C – N.J.A.C. 7:13-3.5 (Method 5)

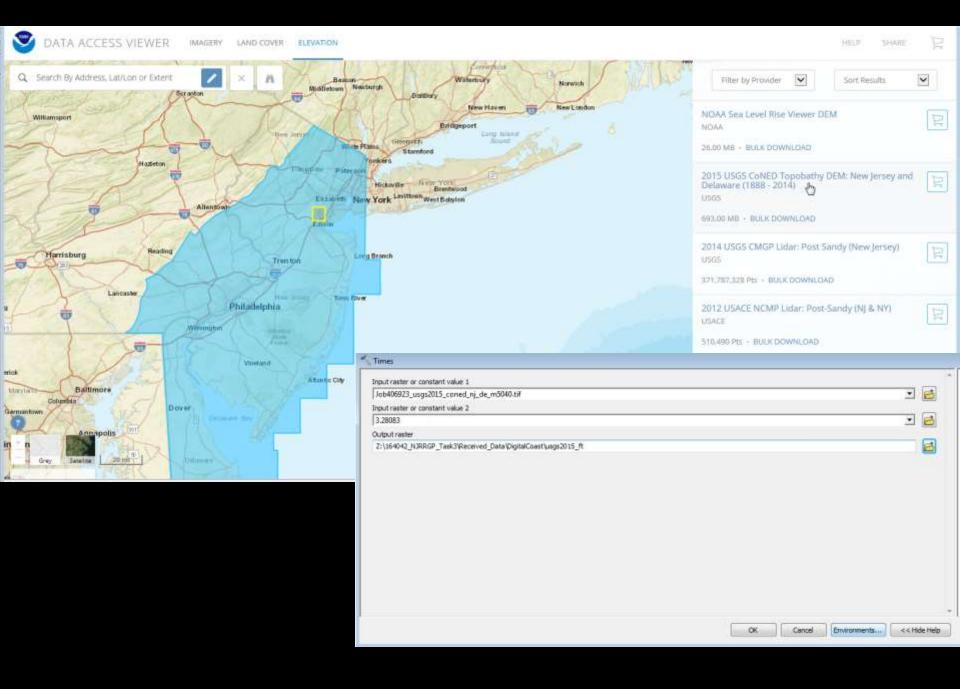

- GIS Routine based on NJ Flood Hazard Area Control Act Rules
- Generates flood depth grids following Appendix 1 "Approximating the Flood Hazard Area Design Flood Elevation"
- Uses Table 1 inputs (WMA & Drainage Area) to estimate flood depth measured above average streambed

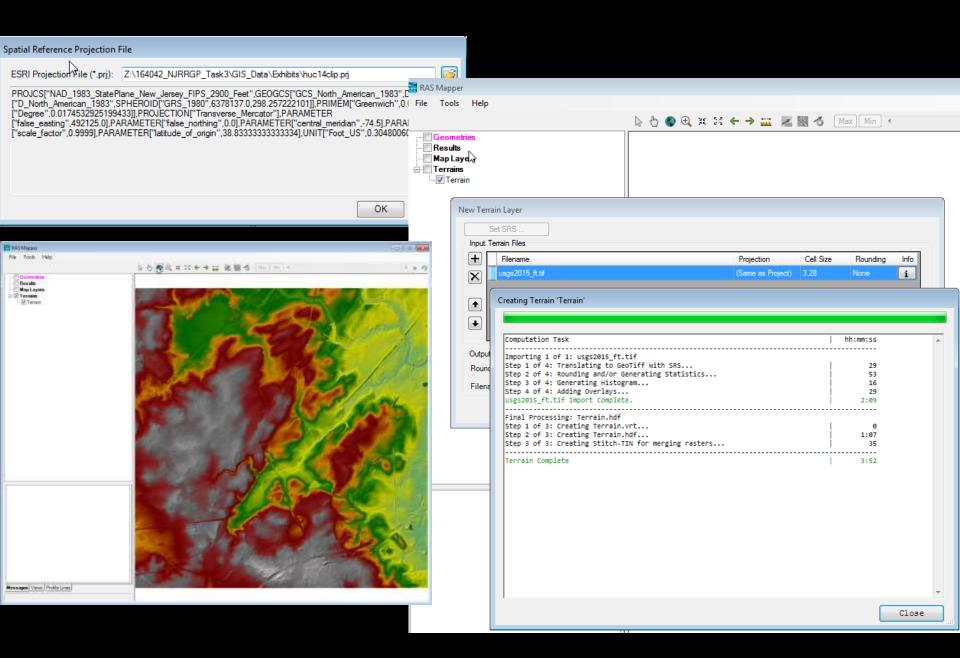

Michael Baker

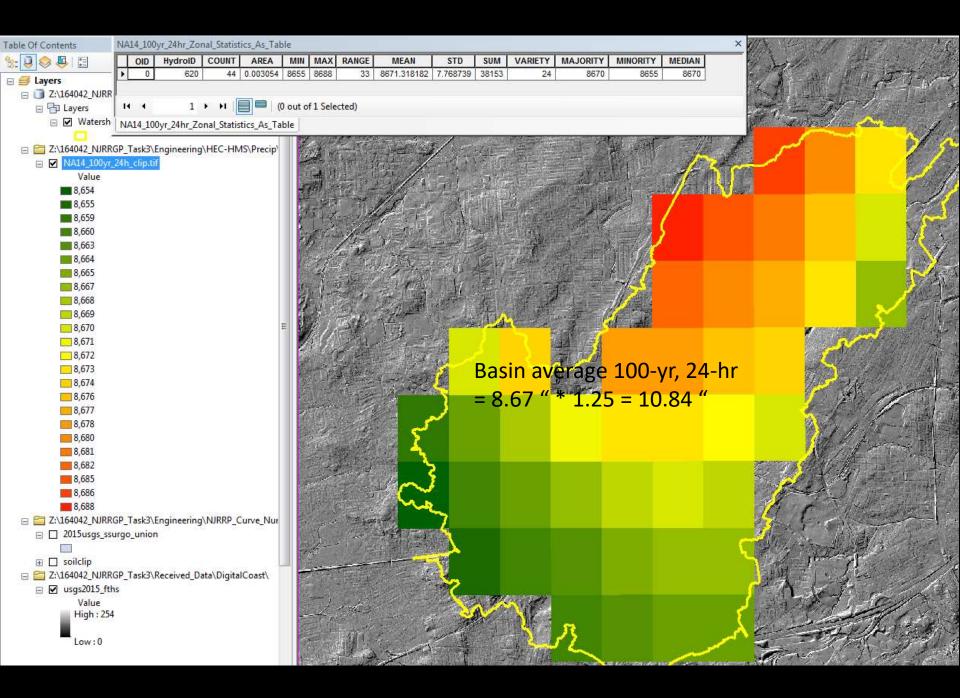
THIS IS A COURTESY COPY OF THIS RULE. ALL OF THE DEPARTMENT'S RULES ARE COMPILED IN TITLE 7 OF THE NEW JERSEY ADMINISTRATIVE CODE.

WMA ¹	Sh	CONTRIBUTORY DRAINAGE AREA ² Shaded box indicates area in acres. Unshaded box indicates area in square miles.													
	FOR	DRA	INAG	e ar	EAS	UP T	0 🌢	TI	HE FI	000) DEF	THI	S SHO	wwc	ł
1		80	195	495	1.9	4.8	12.1	30.0							
2		80	195	495	1.9	4.8	12.1	30.0							
3			80	150	290	550	1.7	3.2	6.1	11.8	22.6	30.0			
4		70	130	235	430	1.2	2.3	4.1	7.6	13.9	25.4	30.0			
5		95	255	1.0	2.8	7.3	19.2	30.0							
6				85	280	1.4	4.7	15.3	30.0						
7							115	245	510	1.7	3.5	7.4	15.6	30.0	
8			60	115	210	395	1.2	2.2	4.0	7.5	14.1	26.3	30.0		
9		80	130	200	310	485	1.2	1.8	2.9	4.5	7.0	11	17.1	26.7	30.0
10	70	110	165	255	390	605	1.5	2.2	3.4	5.3	8.2	12.6	19.4	30.0	
11		80	145	265	490	1.4	2.6	4.8	8.8	16.1	30.0				
12				115	280	1.1	2.6	6.2	15.0	30.0					
13		85	210	530	2.1	5.1	12.7	30.0						1	
14		85	210	530	2.1	5.1	12.7	30.0							
15		85	210	530	2.1	5.1	12.7	30.0						EXAMPLE	
16		85	210	530	2.1	5.1	12.7	30.0						P	
17		85	210	530	2.1	5.1	12.7	30.0							
18	75	125	205	350	590	1.6	2.6	4.4	7.5	12.6	21.3	30.0			
19	60	115	225	440	1.3	2.6	5.1	9.9	19.2	30.0			-		
20	60	115	225	440	1.3	2.6	5.1	9.9	19.2	30.0				÷	
DEPTH ³ (feet) →	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

TABLE 1 APPROXIMATE FLOOD DEPTHS ABOVE AVERAGE STREAMBED ELEVATION (SEE N.J.A.C.-7:13-3.5)

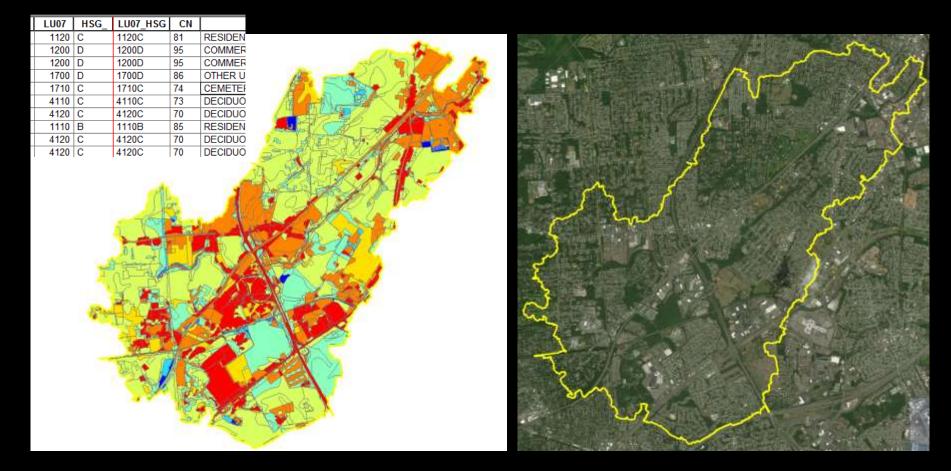


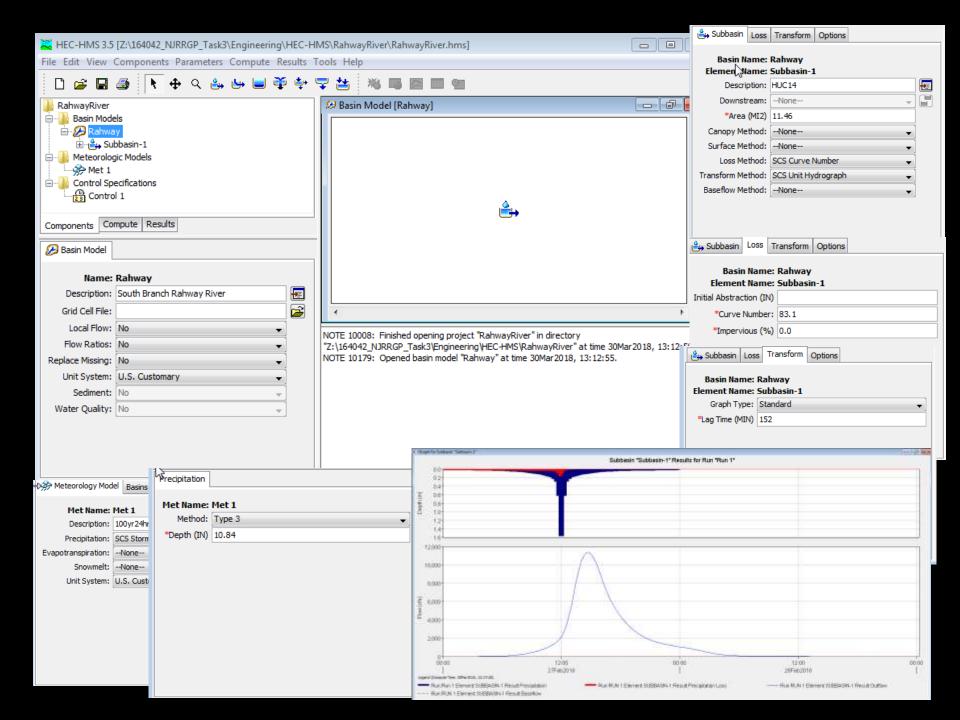



Michael Baker

METHOD D – HEC-RAS 2D Rain on Grid

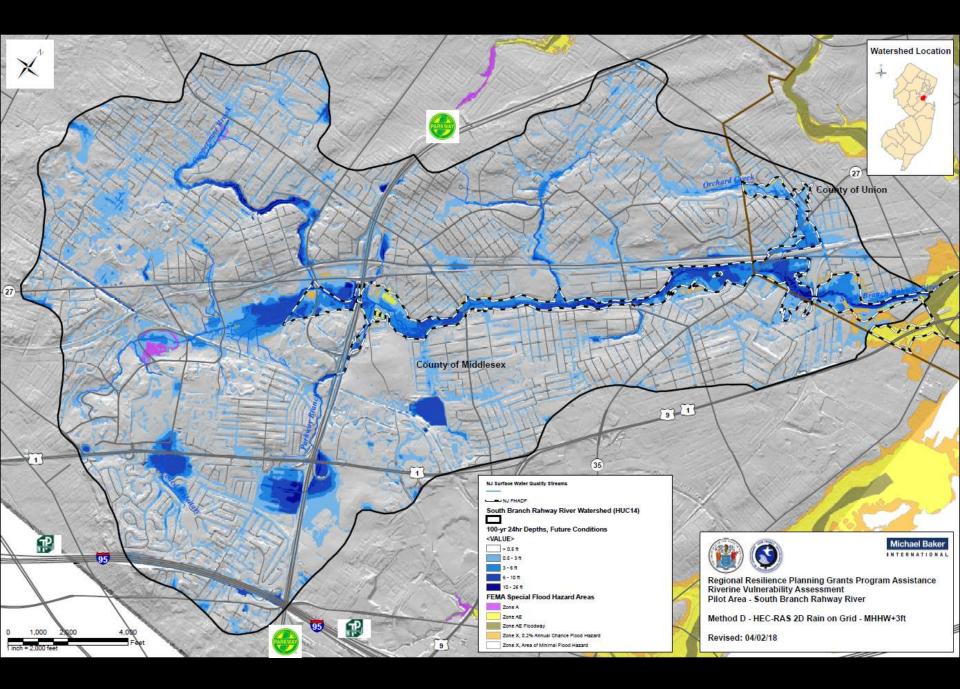
- Model-based approach
- Base Level Engineering using two-dimensional (2D) methods aligned with recent FEMA studies in other States
- HEC-RAS hydraulic model primarily from terrain and excess precipitation, with minimal user input
- Doesn't explicitly account for urban storm management systems, but does have some enhancement options





NJ LULC 2012 (rev 2015) -> TR-55 -> CN

					SC	6 Curve Nu	mber	
LU7Code	NIDEP - Anderson_Type	TR-55_Type	TR-55 Avg % Impervious	A	В	B C D		Notes
11	10 RESIDENTIAL, HIGH DENSITY OR MULTIPLE DWELLING	Residential (1/B acre)		65	77	85	90	92
11	20 RESIDENTIAL, SINGLE UNIT, MEDIUM DENSITY	Residential (1/3 acre)		30	57	72	81	86
11	30 RESIDENTIAL, SINGLE UNIT, LOW DENSITY	Residential (1 acre)		20	51	68	79	B4
11	40 RESIDENTIAL, RURAL, SINGLE UNIT	Residential (2 acres)		12	46	65	77	82
11	50 MIXED RESIDENTIAL	Residential (averaged over lot sizes)		32	58	73	82	86 Averaged
17	00 COMMERCIAL/SERVICES	Urban districts (commercial and busine	ł.	85	89	92	94	95
12	11 MILITARY INSTALLATIONS	Urban districts (commercial and busine		85	89	92	94	95
17	14 NO LONGER MILITARY	Urban districts (commercial and busine	1	85	89	92	94	95
13	00 INDUSTRIAL	Urban districts (industrial)		72	81	88	91	93
14	00 TRANSPORTATION/COMMUNICATION/UTILITIES	Impervious Areas (Paved, open ditches		75	83	89	92	93
14	10 MAJOR ROADWAY	Impervious Areas (Streets and roads, p.	l	100	98	98	98	98
14	11 MIXED TRANSPORTATION CORRIDOR OVERLAP AREA	Impervious Areas (Paved, open ditches		75	83	89	92	93
14	19 BRIDGE OVER WATER	Impervious Areas (Paved, open ditches		75	83	-89	92	93
14	20 RAILROADS	Impervious Areas (Gravel)		63	76	85	69	91
14	40 AIRPORT FACILITIES	Impervious Areas (Paved, open ditches	1	75	83	89	92	93
14	61 WETLAND RIGHTS-OF-WAY	Woods (Poor)		0	45	66	77	83 Assumed woodlands wetland with higher runoff
14	62 UPLAND RIGHTS-OF-WAY DEVELOPED	Residential (averaged over lot sizes)		32	58	73	82	86 Averaged
14	63 UPLAND RIGHTS-OF-WAY UNDEVELOPED	Woods (Fair)		0	36	60	73	79
14	99 STORMWATER BASIN	Open space (good)		0	39	61	74	80
15	00 INDUSTRIAL AND COMMERCIAL COMPLEXES	Urban districts (commercial and busine	1	85	89	92	94	95
16	00 MIXED URBAN OR BUILT-UP LAND	Residential (averaged over lot sizes)		32	58	73	82	86 Averaged
17	00 OTHER URBAN OR BUILT-UP LAND	Residential (averaged over lot sizes)		32	58	73	82	86 Averaged
17	10 CEMETERY	Open space (good)		0	39	61	74	80
17	11 CEMETERY ON WETLAND	Open space (poor)		0	68	79	86	89 Assumed cemetary with higher runoff
17	41 PHRAGMITES DOMINATE URBAN AREA	Brush (Fair)		0	35	56	70	77
17	50 MANAGED WETLAND IN MAINTAINED LAWN GREENSPACE	Open space (fair)		0.	49	69	79	84
18	00 RECREATIONAL LAND	Open space (fair)		0	49	69	79	84
18	04 ATHLETIC FIELDS (SCHOOLS)	Open space (good)		0	39	61	74	80
18	110 STADIUM, THEATERS, CULTURAL CENTERS AND ZOOS	Urban districts (commercial and busine		85	89	92	94	95
18	50 MANAGED WETLAND IN BUILT-UP MAINTAINED REC AREA	Open space (fair)		0	49	69	79	84
21	00 CROPLAND AND PASTURELAND	Pasture, grassland, or range (good)			39	61	74	80
21	40 AGRICULTURAL WETLANDS (MODIFIED)	Pasture, grassland, or range (poor)			68	79	86	89 Assumed higher runoff than dry pasture
21	50 FORMER AGRICULTURAL WETLAND (BECOMING SHRUBBY, NOT BUILT-UP	(Brush (poor)			48	67	77	83
22	00 ORCHARDS/VINEYARDS/NURSERIES/HORTICULTURAL AREAS	Row Crops (SR Good)			67	78	85	89
						100.0	-	


		EXISTING		FUTURE
			% Total	
	% Total Area	Average CN	Area	Average CN
URBAN (Code 1000)	88%	83.5	90%	83.5
AGRICULTURAL, FOREST & BARREN (Codes 2000,4000 & 7000)	9%	72.3	8 7%	72.3
WATER/WETLANDS (Codes 5000-6000, 8000)	3%	94.8	3%	94.8
Total	100%	82.9	100%	83.1

Datums for 8531680, Sandy Hook NJ

			inguite 21 Matter et	veis above curre	inclumine Absect	Water Leve	
Elevations on Sta Station: 8531680, Sandy Status: Accepted (Apr 17	Hook, NJ	T.M.: 0 Epoch: 1983-2001	lation			1 ft.	 Permanent Inundation (MHHW) in 2030 using Central HE/LE Scenarios (0.8 ft.) Permanent Inundation (MHHW) in 2030 using 1-in-20 Chance HE Scenario (1.1 ft.) Permanent Inundation (MHHW) in 2050 using Central HE/LE Scenarios (1.4 ft.)
Units: Feet Datum			nt Inund			2 ft.	 Current Annual (99% AEP) flood (1.7 ft.) Permanent Inundation (MIHHW) in 2050 using 1-in-20 Chance HE Scenario (2.0 ft.) Permanent Inundation (MIHHW) in 2100 using Central LE Scenario (2.3 ft.)
MHHW	7.74	Mean Higher-High Water	mane				Annual (99% AEP) flood in 2030 using Central HE/LE Scenarios (2.5 ft.)
MHW	7.41	Mean High Water	Pei	Coastal Flooding		3 ft.	 Annual (99% AEP) flood in 2030 using a 1-in-20 Chance HE Scenario (2.8 ft.) Annual (99% AEP) flood in 2050 using Central HE/LE Scenario (3.1 ft.)
MTL	5.06	Mean Tide Level		stal Flo	<u>به</u>		 Permanent Inundation (MIHHW) in 2100 using a Central HE Scenario (3.4 ft.) Sandy Storm Tide in 2030 using Central HE/LE Scenarios (4.9 ft.)
MSL	5.09	Mean Sea Level		it Coa	loodin		 Sandy Storm Tide in 2030 using 1-in-20 HE Scenario (5.2 ft.) Current 100-year (1% AEP) Flood (4.9 ft.)
DTL	5.12	Mean Diurnal Tide Level		currer	Coastal Flooding (Storms)	5 ft.	 10-year (10% AEP) flood in 2030 using a 1-in-20 HE Scenario (4.6 ft.) 10-year (10% AEP) flood in 2050 using Central HE/LE Scenarios (4.9 ft.)
MLW	2.71	Mean Low Water		Re	ne Co: (Sto		Annual (99% AEP) flood in 2100 using Central HE Scenario (5.1 ft.) Permanent Inundation (MIHHW) in 2100 using a 1-in-20 HE Scenario (5.3 ft.)
MLLW	2.51	Mean Lower-Low Water			Extre	9 ft.	Sandy Storm Tide in 2100 using 1-in-20 HE Scenario (9.4 ft.) 10-year (10% AEP) flood in 2100 using a 1-in-20 HE Scenario (8.8 ft.)
NAVD88	5.33	North American Vertical Dat	Notes: AEP = Annual	Exceedance Probab	ility, HE = High Emi	ssions, LE = Low Emiss	ions, MHHW = Mean Higher High Water, SLR = Relative Sea Level Rise. All values are with respect to
Phil DSS Plue File Options Help		[÷Figure 2. Water Le	evels above Curre	nt MHHW Asses	sed for Exposure Ar Water Level	alyses (Sandy Hook, NJ)
Path: (Al Patha)			i			1 ft.	 Permanent Inundation (MHHW) in 2030 using Central HE/LE Scenarios (0.8 ft.) Permanent Inundation (MHHW) in 2030 using 1-in-20 HE Scenario (1.1 ft.) Permanent Inundation (MHHW) in 2050 using Central HE/LE Scenarios (1.4 ft.)
18		SUBBASIN-1	ient Inundat	ooding		2 ft.	Permanent Inundation (WHHW) in 2050 using Central H2/LE Scenarios (1.4 H.) Current Annual (99% AEP) flood (1.8 ft.) Permanent Inundation (MHHW) in 2050 using 1-in-20 HE Scenario (2.0 ft.) Permanent Inundation (MHHW) in 2100 using Central LE Scenario (2.3 ft.)
12			Permai	ent Coastal F		3 ft.	 Annual (99% AEP) flood in 2030 using Central HE/LE Scenarios (2.6 ft.) Annual (99% AEP) flood in 2030 using a 1-in-20 HE Scenario (2.9 ft.) Annual (99% AEP) flood in 2050 using Central HE/LE Scenario (3.2 ft.) Permanent Inundation (MHHW) in 2100 using a Central HE Scenario (3.4 ft.)
8.0 BIN				Recurr	Extreme Coastal Flooding (Storms)	7 ft.	 Current 100-year (1% AEP) Flood (6.9 ft.) Annual (99% AEP) flood in 2100 using a 1-in-20 HE Scenario (7.1 ft.)
0.8						12 ft.	 Sandy Storm Tide in 2100 using Central HE Scenario (11.7 ft.) 100-year (1% AEP) flood in 2100 using 1-in-20 HE Scenario (12.2 ft.)
0.2	12		Notes: AEP = Annual	Exceedance Probab	ility, HE = High Emi	ssions, LE - Low Emiss	ions, MHHW = Mean Higher High Water, SLR = Relative Sea Level Rise. All values are with respect to
0.0 2400 0600	1208 1886 2 27Feb2019	e30 0500 1200 1808 I Time 28Fes2018	2400 0600 J 01Mw2018	-			

Figure 1. Water Levels above Current MHHW Assessed for Exposure Analyses (Atlantic City, NJ)

