Risk, Mitigation, & Planning

Lessons from Flooding in the Houston Area

Russell Blessing, Samuel Brody & Wesley Highfield

CUMULATIVE FLOOD LOSS: 1972-2015

INSURED FLOOD Loss: 1972-2015

THE HOUSTON-GALVESTON REGION

Galveston Bay Area Flooding

- Houston is one of most flood prone cities in U.S.
- Rapidly moving weather systems result in explosive rainfalls
- Little topographic relief, clay soils, and impervious surfaces contribute to large volumes of runoff and ponding
- Low lying coastal areas subject to surge
- Older homes with little elevation are subject to street flooding
- Population growth of 3.7 million people is expected in the region by 2040 (annual growth of \sim 100,000 people)

Chronic Flooding in Harris County

- 6/10 of the most flood-damaged coastal zip codes
- the most flood-related fatalities in the U.S. in the last 50 years
- 47% of all flood claims (1996-2007) were outside of the 100 year floodplain boundary

Search Location

Q

An Inadequate Indicator of Risk

The FEMA 100-year Floodplain

Two-Part Study

1. Examined the characteristics of flood loss occurring outside the floodplain.

2. Identified the drivers of flood loss outside the floodplain.

IMPORTANCE OF PROXIMITY

- Properties further away from floodplain experience less damage
 - 1 foot = \$23.20 decrease in reported damage

...BUT...

• Living a quarter mile outside the floodplain still leaves an expected loss of \$12,972.

Drivers of Flood Loss Outside the Floodplain

Disconnect b/w floodplains and actual loss

- Model uncertainty
- Risk is a gradient

The 100-year flood is a moving target

- Changes in development
- Changes in storm intensities and frequencies

Storm Characteristics

- Intensity
- Duration
- Antecedent rainfall

Comparing Models of Flood Risk

Can spatially distributed models better capture historical flood damage?

2D fully distributed hydrologic model vs FEMA's 100-year floodplain

	Captured Damage		Captured Claims	
	Vflo	SFHA	Vflo	SFHA
Allison	81.8%	29.8%	76.5%	24.5%
Erin	55.6%	13.0%	53.1%	15.3%
Ike	31.5%	18.0%	47.7%	7.3%
April	68.0%	13.0%	66.7%	12.8%
Oct	81.2%	48.9%	69.6%	21.7%
Other	38.2%	0.0%	80.0%	0.0%
Total	74.2%	25.5%	67.9%	19.9%

Two Key Points

1. Changing LULC is a key driver of flood loss outside the 100-year floodplain.

2. Even the most advanced model of flood risk will be undermined by changes in LULC.

Mitigating Flood Risk

The Community Rating System

Two-Part Study

1. Examined the effect of CRS activities at reducing flood losses and insurance premiums.

2. Generated a scenario based cost benefit analysis of CRS avoidance based strategies.

Offsetting Rising Premiums

- Clear Creek Watershed: 1999-2009
- How much would premiums have increased had HFIAA gone into effect?

Average Premium Increase Floodplain

	Floouplain		All
City	Inside	Outside	All
Manvel	-	\$96	\$96
League City	\$404	\$149	\$184
Webster	\$280	\$165	\$192
Friendswood	\$456	\$213	\$257
Alvin	\$1,560	\$156	\$284
Brookside Village	\$363	\$245	\$292
Pearland	\$589	\$205	\$323
Houston	\$482	\$238	\$325
Kemah	\$449	\$131	\$364
El Lago	\$558	\$258	\$373
Seabrook	\$507	\$289	\$384
Shoreacres	\$373	\$536	\$453
Clear Lake Shores	\$463	-	\$463
Nassau Bay	\$610	\$290	\$473
Pasadena	\$513	-	\$513
La Porte	\$586	\$413	\$531
Taylor Lake Village	\$1,004	\$244	\$776
Watershed	\$508	\$227	\$338

The Value of Avoiding Flood Risk

How much can be saved?

	Activity	Mitigation Activity	Mean Points	Maximum Possible	Per Point	Total Mean Savings	
	320	Map Information	124	140	-\$140	-\$13,622	
	330	Outreach Projects	110	315	-\$164	-\$13,972	
	340	Hazard Disclosure	12	81	-\$324	-\$3,737	
	350	Flood Protection Info.	32	66	-\$873	-\$18,933	
	360	Flood Protection Assistance	33	71	-\$290	-\$8,386	
₽₩	410	Floodplain Mapping	29	1373	-\$518	-\$12,299	ļ.,
	420	Open Space Protection	106	900	-\$68	-\$6,524	H
	430	Higher Reg. Stds.	259	2720	-\$130	-\$21,358	Ŀ
	440	Flood Data Maint.	90	231	-\$331	-\$19,895	
	450	Storm water Management	69	670	-\$157	-\$9,270	
	510	Floodplain Planning	64	309	-\$273	-\$13,622	
	520	Acquisition/Relocation	317	3200	-\$24	-\$6,788	
	540	Drainage System Maint.	216	330	-\$68	-\$11,937	

The Value of Avoiding Flood Risk

How much damage would have been avoided?

Time Period: 1999-2009

420: Open Space Preservation

430: Higher Regulatory

Standards

500 point increase in avoidance based mitigation.

Who saves?

Those that were:

- Damaged the most
- Low-lying & coastal
- Cities with high development in the floodplain

Data Visualization

Enables:

- Outreach
- Exploration
- Dynamic "story-telling"

Looking Forward

Future Development, Moving Floodplains, & Sea Level Rise

- Flood risk reduction is a moving target:
 - Storm event characteristics
 - Land Use/Land Cover change
 - Existing mitigation
 - Sea level rise
- What do regional-scale scenarios of future flood damage look like?
 - Forecast land cover change/development
 - Model the distribution of structures in future scenarios.
 - Estimate future storm surge damages

Land Cover Data

- National Land Cover Dataset
 - 30 meter: 2001, 2006, & 2011
 - Reclassified to improve model accuracy

NLCD	Reclassified
Developed, Open Space	
Developed, Low Intensity	Developed
Developed, Medium Intensity	Developed
Developed High Intensity	
Barren Land	Barren
Deciduous Forest	
Evergreen Forest	
Mixed Forest	Forest
Dwarf Scrub	
Shrub/Scrub	
Grassland/Herbaceous	Grassland
Sedge/Herbaceous	Grassiano
Pasture/Hay	A a / Docture
Cultivated Crops	Ag/Pasture
Woody Wetlands	Wotland
Emergent Herbaceous Wetlands	Wetland
Open Water	Water

HISTORICAL CHANGE ANALYSIS

- Analyze past land cover change
- Change assessed from 2001 to 2006

MODELING DEVELOPMENT PROBABILITIES

- Change probabilities are developed using an artificial neural networks (ANNs)
 - Can model complex, non-linear relationships between drivers and development
 - Drivers + Transitions (2001-2006)
 - Network of weights formed using an iterative learning process (i.e. training)

Validation

- Forecast 2011 land cover from 2006 changes
- Compare with actual 2011 change
 - Soft prediction of 2011
 - Overlaid on top of what actually changed Relative Operating Characteristic Curve

Integrating Future Development and Flood Damage

- Preliminary "back of the envelope" estimates
 - Extrapolate residential structure types and counts
 - developed land cover density relationships
- Re-estimate damage with HAZUS and updated counts
- ADCIRC inundation layers as inputs
 - Storm surge for 10%/1%/0.02% percent storms and Hurricane Ike
 - Only residential structures

• 10-year surge event: increases damage from ~\$500m to ~\$700m

• 100-year surge event: increases damage from ~\$4.3b to ~\$8b;

• 500-year surge event: increases damage from ~\$8b to ~\$18.3b;

• A repeat of Hurricane Ike: increases damage from ~\$2.97b to \$5.33b

Future Work

- Flood risk is a constantly moving target
- Higher reg's and floodplain avoidance are cost effective in the face of dynamic risk
- Visualizing historic losses can be leveraged to improve risk communication
- More thorough cost-benefit analysis of specific mitigation activities
 - Especially on the "cost" side
- In-depth future flood risk assessment over a range of scenarios:
 - Sea level rise into surge models
 - H&H with forecasted land cover change
 - Future floodplain delineations
 - Mitigation scenarios

Thank You

