

Goodwin Fire Post-Burn Runoff Calibration

Yavapai County, Arizona

Dan Cherry, Yavapai County
Linda Potter, Atkins North America, Inc.

Presentation Topics

Goodwin Fire statistics

Post-fire activities

Flood Event

Calibration Activities

Goodwin Fire statistics

Dan Cherry, Yavapai County

Goodwin Fire

Wildland fire in Yavapai County, Arizona

- > Start date: June 24, 2017, ~4:00 pm
- > Containment: July 10, 2017
- Over 28,000 acres in Prescott National Forest
- > Big Bug Mesa near Mayer, Arizona
- > Cause: listed as under investigation

Location

- Near Mayer, Arizona
- > Drains to Big Bug Creek
 - > Flows through the communities of Mayer,Spring Valley, and Cordes Lakes
- > Effective study from 2014
- Flood Control District has good quality topographic mapping of floodplain and vicinity

Big Bug Creek through Mayer and Spring Valley

Note interface with residential structures and transportation

Burn Intensity Map

- > Burned Area Emergency Response (BAER) team from the forest service provided support
- > 78% of fire identified as severe or moderate burn intensity
- > 22,000 acres
- Over 10,000 acres of water repellent soils per BAER team

Post-Fire activities Recovery and Flood Warning

Post-fire activities

Concerns:

- > Downstream populated areas
- > State Route 69 transportation corridor
- > Low-lying mobile homes and houses

Public meetings held

Precipitation and flow gages

Re-seeding

Gage installation

Four new gages installed in burned watershed, two existing gages

- Grapevine Canyon
- › Big Bug Mesa
- > Upper Hackberry
- > Radar flow sensor on State Route 69 at Big Bug Creek

Gage pictures

Seeding and mulching

NRCS Emergency Watershed Protection Grant

Monsoon Storm Activity

- > July 13, 2017 first flush event
- > July 19, 2017 monsoon storm
 - > Grapevine gage: 2.01" in 26 minutes
 - > Big Bug Mesa gage: 1.26" in 21 minutes
- > ~25- to 50-year frequency event

Flow at S.R. 69

Peak discharge 7,000 cfs, 10 feet of depth

July 19th Flood

- > 50 people evacuated
- Two mobile home parks flooded
- > S.R. 69 overtopped
- Local roads closed and damaged

Hydrologic response in burn area

High water marks, post-flood data collection

- > Time was of the essence
- > Ash residue, water marks, and flotsam
- Gathered flood inundation limits, cross sections, high water marks
- > Drone aerial and ground photography and video

Hydrologic Modeling

Methodology:

- > HEC-HMS using Curve Number (CN) method
- Lag per SCS watershed method
- Muskingum-Cunge reach routing method

Before 7/17 flood occurred:

- > Post-burn model created
- > CN increases estimated using BAER team recommendations

(2007 Higginson and Jarnecke)

High	burn severity CN	
Moderate	burn severity CN	
Low	burn severity CN	
Maximum CN value is 100		

= pre-fire CN + 15 = pre-fire CN + 10 = pre-fire CN + 5

Description	CN
A UB	50
A Low	55
A Mod	60
A High	65
B UB	70
B Low	77
B Mod	80
B High	85
C UB	83
C Low	86
C Mod	91
C High	94
D UB	91
D Low	91
D Mod	93
D High	94

After 7/17 flood:

- Calibration
- > Radar downloaded from NOAA
- Distribution and total rainfall from gages

Calibration

What can be changed:

- X> Precipitation
- X> Area, length, slope
 - > Curve Number (CN)
 - Lag time (function of CN)
 - > Routing
 - > Roughness
 - X > Shape
- Impervious area
 - > Hydrophobic not impervious

Goal: Peak, timing, shape match

Calibration steps

- 1. Precipitation into model
- 2. Routes in burn area
- 3. Trial and error CN and Lag

Precipitation: Radar vs. gage

- Fair coverage from Phoenix and Flagstaff radar
- Slight shift compared to actual measurements
- Adjusted radar to match

Reach routing

Roughness reduced in burn areas from 0.05 to 0.035

Account for reduction in vegetation

In Arizona, vegetation is in the channel

Curve Number

- > Pre-burn model CNs modified using trial and error
- Goal: uniform recommendation on post burn increases
- > Final CNs using a percent increase based on burn severity

Burn Intensity	% increase
Low	1.1
Moderate	1.3
High	1.5

- (Note: table above says % increase but is actually a factor, i.e.1.1 or 10%)
- > CN composite increases of up to 20

Lag Time

- > Function of CN
- > Quicker timing in post-burn event

Results

Good match in timing and peak

Results

Post burn runoff for this storm:

7x pre-burn conditions

1.5 hours faster arrival time at S.R 69

Recommendations

Post burn models:

CN increased based on burn severity as follows:

Burn Intensity	% increase
Low	1.1
Moderate	1.3
High	1.5

Routing roughness adjustments for burned areas as applicable

Contacts:

Dan Cherry Yavapai County 928-771-3183

Linda Potter Atkins North America, Inc. 480-538-1545

Questions?

