EVALUATING THE VULNERABILITY OF INFRASTRUCTURE TO COASTAL STORMS – A CASE STUDY

Marine Transfer Station Coastal Storm Surge Vulnerability Assessment

Prepared for: New York City Department of Sanitation Prepared by: HDR Engineering

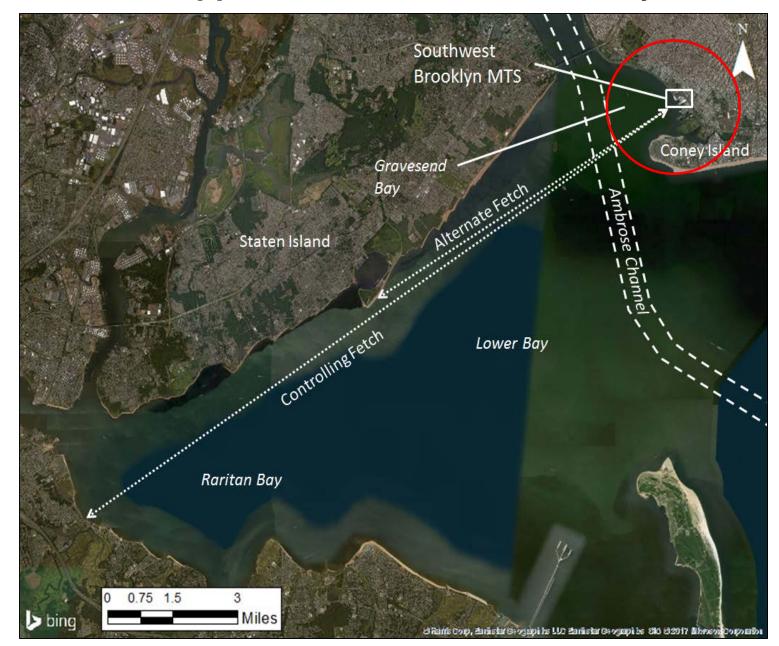
FC

HDR Project Team

- Michael Vecchio, PE Project Manager, General Technical Approach
- Wes Jacobs, PE and Jason Abendroth, PE Structural
- Dan Heilman, PE and Christian Lappann-Johannessen EIT Coastal
- Derick Tonning, PE Civil

'Vulnerability', as applied in this evaluation, refers to being prone to destabilization, as it relates to structural features, or inoperability, as it relates to life safety or process-critical infrastructure and equipment.

Project Phasing


- Phase 1 Design Criteria and Vulnerability Assessment
- Phase 2 Facility Alternatives Analysis
- Phase 3 Design and Development of Bid Packages

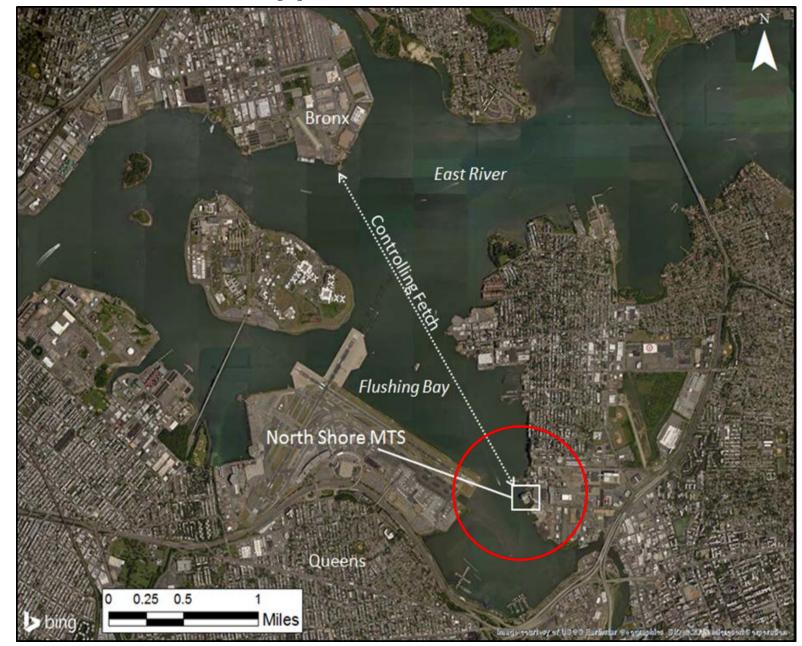
Project Phasing

- Phase 1 Design Criteria and Vulnerability Assessment
- Phase 2 Facility Alternatives Analysis
- Phase 3 Design and Development of Bid Packages

Marine Transfer Station Setting

Wave Approach at Southwest Brooklyn

Wave Approach at Hamilton Avenue


Wave Approach at 59th Street

Wave Approach at East 91st Street

Wave Approach at North Shore

Basis of Vulnerability Assessment

- Loads associated with 100-year Coastal Storm
- Focused on Six Loading Conditions:
 - 1. Inflow of High Water Through Building Openings
 - 2. Hydrostatic Force on Walls
 - 3. Backflow Through Stormwater or Sanitary Sewers
 - 4. Wave Impacts
 - 5. Debris Impacts
 - 6. Vessel Impacts

Basis of Vulnerability Assessment

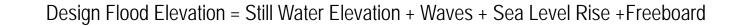
- Loads associated with 100-year Coastal Storm
- Focused on Six Loading Conditions:
 - 1. Inflow of High Water Through Building Openings
 - 2. Hydrostatic Force on Walls
 - 3. Backflow Through Stormwater or Sanitary Sewers
 - 4. Wave Impacts
 - 5. Debris Impacts
 - 6. Vessel Impacts
- Loading Conditions Studied Previously and Not Studied Previously

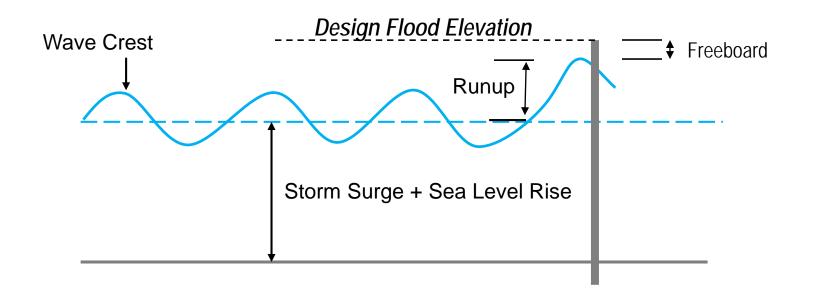
Basis of Vulnerability Assessment

- Loads associated with 100-year Coastal Storm
- Focused on Six Loading Conditions:
 - 1. Inflow of High Water Through Building Openings
 - 2. Hydrostatic Force on Walls
 - 3. Backflow Through Stormwater or Sanitary Sewers
 - 4. Wave Impacts
 - 5. Debris Impacts
 - 6. Vessel Impacts
- Loading Conditions Studied or Addressed Previously and Not Studied Previously

1. High Water Inflow Add and Upgrade Dry Flood Proofing for Revised DFE

- 1. High Water Inflow Add and Upgrade Dry Flood Proofing for Revised DFE
- 2. Backflow Add and Upgrade Backflow Protection for Revised DFE


- 1. High Water Inflow Add and Upgrade Dry Flood Proofing for Revised DFE
- 2. Backflow Add and Upgrade Backflow Protection Evaluation for Revised DFE
- 3. Debris and Vessel Impact Advance In-Water Pile Clusters to Design


- 1. High Water Inflow Add and Upgrade Dry Flood Proofing for Revised DFE
- 2. Backflow Add and Upgrade Backflow Protection for Revised DFE
- 3. Debris and Vessel Impact Advance In-Water Pile Clusters to Design
- 4. Wave Impacts Refine Wave and Structural Vulnerability Evaluation

- 1. High Water Inflow Add and Upgrade Dry Flood Proofing for Revised DFE
- 2. Backflow Add and Upgrade Backflow Protection for Revised DFE
- 3. Debris and Vessel Impact Advance In-Water Pile Clusters to Design
- 4. Wave Impacts Refine Wave and Structural Vulnerability Evaluation

REVIEW / Design Flood Elevation (DFE)

- Storm surge elevation (still-water elevation, "SWE")
- Waves (wave crest, and runup)
- Freeboard
- Sea level rise (SLR)

REVIEW / References Reviewed for Design Flood Elevation

Source	SWE	Waves	SLR	Freeboard	DFE
FEMA FIS and FIRM	\checkmark	\checkmark			
USACE NACCS	\checkmark				
Super Storm Sandy High Water Marks	\checkmark	\checkmark			
NPCC			\checkmark		
USACE SLR Calculator			\checkmark		
FEMA 44 CFR 65.10				\checkmark	\checkmark
ASCE 24				\checkmark	\checkmark
NYC Building Code				\checkmark	\checkmark
PANYNJ Resiliency Guidelines			\checkmark	\checkmark	\checkmark

NACCS – North Atlantic Coast Comprehensive Study NPCC – New York Panel on Climate Change

REVIEW / Key Findings

Water Elevation (feet)					
Location	Super Storm Sandy High Water Marks	FEMA BFE (from prelim FIRM)			
Southwest Brooklyn	11.5	12			
Hamilton Avenue	11.1	12			
West 59th Street	10.3	12 to 15			
East 91st Street	10.4	15			
North Shore 10.5 17					
* All elevations are referenced to North	American Vertical Datum 1988 (NAVD88)				

Sea Level Rise				
	2000-2050			
Reference	Low	Med	High	
PANYNJ	-	1.3	-	
NPCC	0.6	0.9 - 2.0	2.6	
USACE	0.4	0.6	1.5	

Recommended DFE for 100 yr Condition, ft (NAVD) Southwest Brooklyn					
Freeboard					
50 yr SLR (NPCC Values) 1 ft		FEMA (44 CFR 65.10)	ASCE 24-14 (Flood Design Class 3)	NYC BC (ASCE 24-05) (Str Occupancy Cat 3)	
		1ft	2ft	1ft	
Middle	1.5 ft	DFE = +14.5 ft	DFE = +15.5 ft	DFE = +14.5 ft	
High	2.6 ft	DFE = +15.6 ft	DFE = +16.6 ft	DFE = +15.6 ft	

Prior DFE = 13 ft

			Freeboard		
50 yr SLR		ASCE 24-14 (Flood Design Class 3)	NYC BC (ASCE 24-05) (Str Occupancy Cat 3)		
(NPCC)	/alues)	1ft	1ft*	1ft	
Middle	1.5 ft	DFE = +14.5 ft	DFE = +14.5 ft	DFE = +14.5 ft	Prior DFE = 13 ft
High	2.6 ft	DFE = +15.6 ft	DFE = +15.6 ft	DFE = +15.6 ft	

*ASCE 24-14, Table 2-1, specifies 1 ft freeboard in non Coastal A Zones for Flood Design Class 3.

			FE for 100 yr Condition, ft (NA West 59th Street	VD)	
			Freeboard		
50 yr SLR		FEMA (44 CFR	Prior DFE = 13 ft Prior DFE = 13 ft	(ASCE 24-05) ancy Cat 3)	
(NPCC)	/alues)	1ft		ft	Prior DFF = 11 ft
Middle	1.5 ft	DFE = +17.5	ft DFE = +18.5 ft	DFE = +17.5 ft	THO DIE TIM
High	2.6 ft	DFE = +18.6	ft DFE = +19.6 ft	DFE = +18.6 ft	

			100 yr Condition, ft (NA t Street	VD)	
Freeboard					
50 yr SLR		FEMA (44 CFR 65.10)	ASCE 24-14 (Flood Design Class 3)	NYC BC (ASCE 24-05) (Str Occupancy Cat 3)	
(NPCC)	/alues)	1ft	2ft	1ft	
Middle	1.5 ft	DFE = +17.5 ft	DFE = +18.5 ft	DFE = +17.5 ft	
High	2.6 ft	DFE = +18.6 ft	DFE = +19.6 ft	DFE = +18.6 ft	

Prior DFE = 16 ft

	1		100 yr Condition, ft (NA th Shore	VD)	
Freeboard					
50 yr SLR (NPCC Values)		FEMA (44 CFR 65.10)	ASCE 24-14 (Flood Design Class 3)	NYC BC (ASCE 24-05) (Str Occupancy Cat 3)	
		1ft	2ft	3 ft*	
Middle	1.5 ft	DFE = +19.5 ft	DFE = +20.5 ft	DFE = +21.5 ft	
High	2.6 ft	DFE = +20.6 ft	DFE = +21.6 ft	DFE = +22.6 ft	

Prior DFE = 18 ft

.

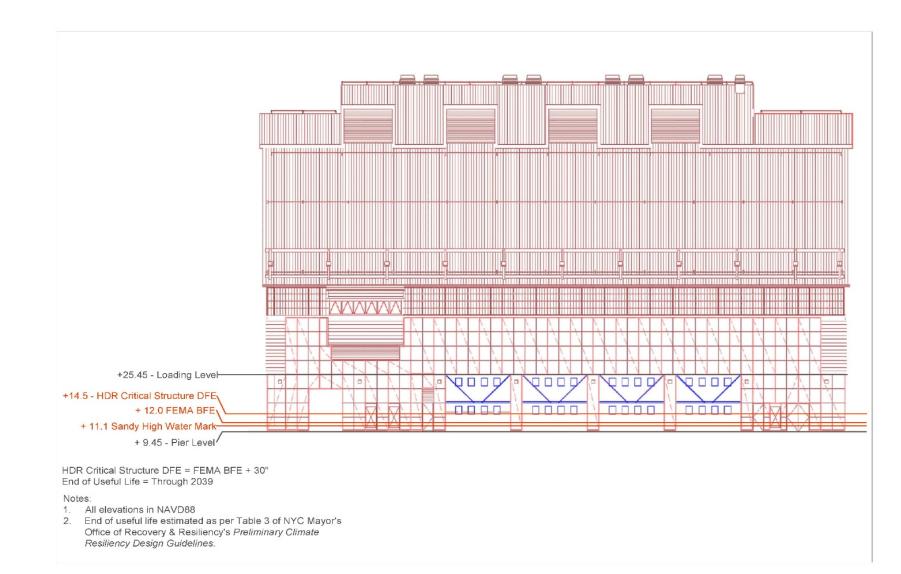
/

*NYC BC specifies 3 ft freeboard for Structural Occupancy Category 3 in FEMA V Zones

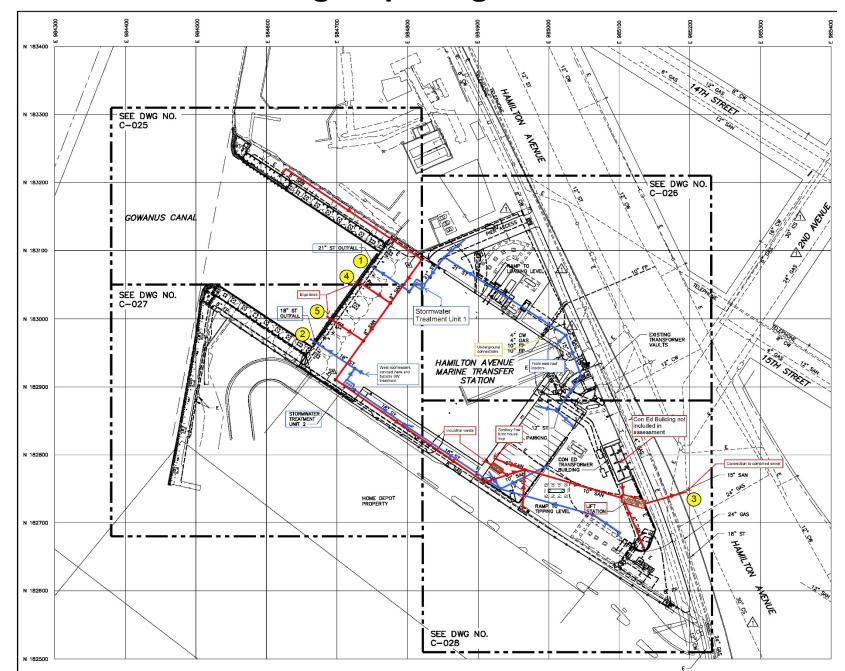
NYC Mayor's Office of Resiliency Climate Resiliency Design Guidelines (April 2017)

Recommendations for Defining Design Flood Elevations

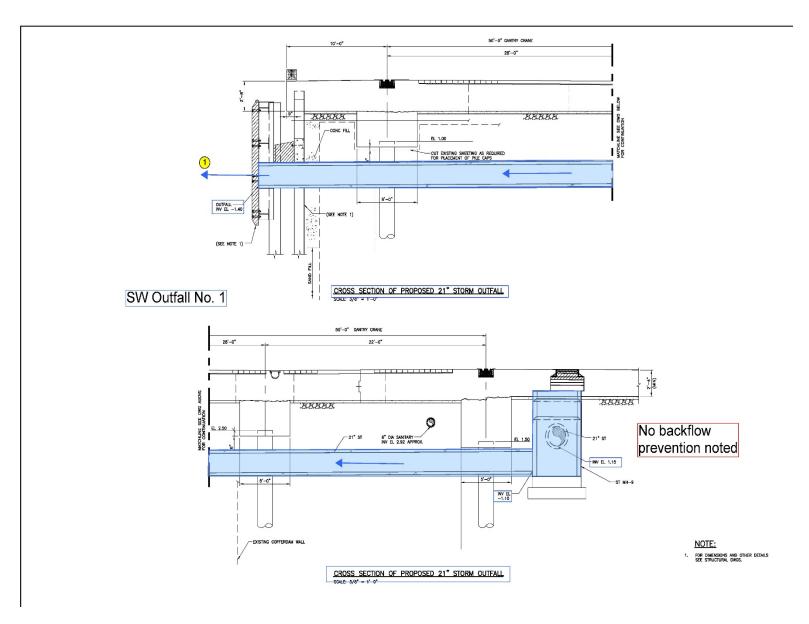
	<u>Critical</u> * facilities						
End of useful life	Base Flood Elevation (BFE) ⁷¹	+ Freeboard ⁷²	+ Sea Level Rise Adjustment ⁷³	= Design Flood Elevation (DFE)			
Through 2039	FEMA 1% (PFIRMs)	24"	6"	= FEMA 1% + 30"			
2040-2069	FEMA 1% (PFIRMs)	24"	16"	= FEMA 1% + 40"			
2070-2099	FEMA 1% (PFIRMs)	24"	28"	= FEMA 1% + 52"			
2100+	FEMA 1% (PFIRMs)	24"	36"	= FEMA 1% + 60"			

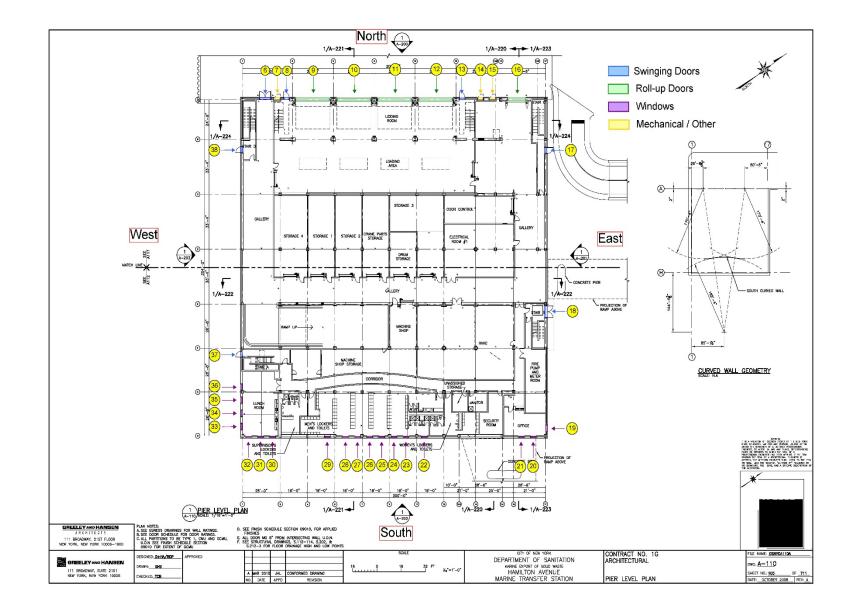

Comparison of Design Flood Elevations

Marine Transfer Station	Current DFE (ft NAVD 88)	Previous DFE (ft NAVD 88)	Comment
Southwest Brooklyn	15.5	13.0	Increase due to addition of sea level rise and freeboard consistent with that FEMA recommends for a Coastal A flood hazard zone.
Hamilton Avenue	14.5	13.0	Increase due to addition of sea level rise.
West 59 th Street	18.5	(11.0)	Increase due to updated FEMA base flood elevation, addition of sea level rise and addition of freeboard consistent with that FEMA recommends for a Coastal A flood hazard zone.
East 91 st Street	18.5	16.0	Increase due to sea level rise and addition of freeboard consistent with that FEMA recommends for a Coastal A flood hazard zone.
North Shore	21.5	18.0	Increase due to addition of sea level rise and addition of consistent with freeboard recommended by NYC BC for Structural Occupancy Call III in a V flood hazard zone.


Information Reviewed to Evaluate Inflow and Backflow Vulnerabilities

MTS Name	Conformed Drawings	Construction Specifications	Facility Assessment Report	Flood Protection Conceptual Design Report	Seawall Feasibility Study
West 59 th Street	~	~	\checkmark		
East 91 st Street	~	~		~	
Hamilton Avenue	~	✓		\checkmark	✓
North Shore	~	✓		~	
Southwest Brooklyn	~	✓		~	

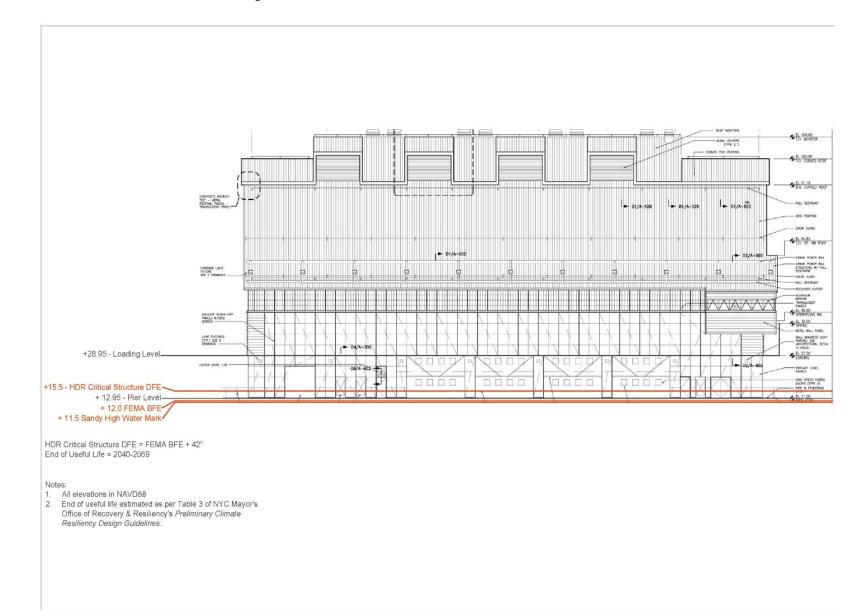

Hamilton Avenue Profile


Inflow Through Openings and Backflow

Backflow Vulnerability Through Stormwater Outfall

Exterior Inflow Vulnerabilities at Pier Level

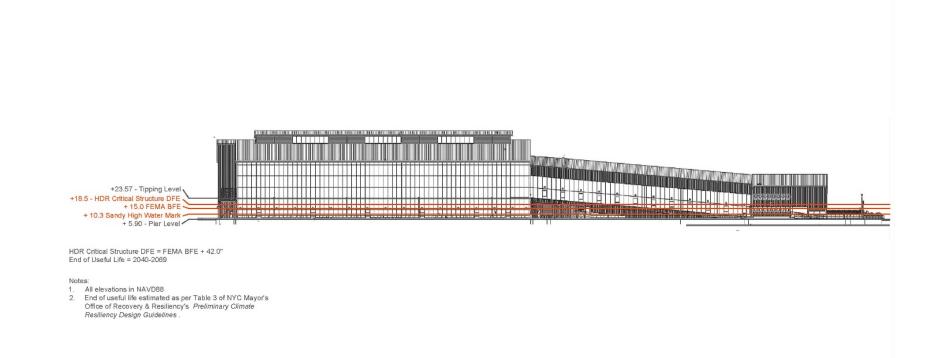
Vulnerability Inventory


Hamilton MTS Vulnerability Summary

Vulnerability ID	Backflow/Inflow	Description	Location	Sheet Number(s)
1	Backflow	SW Outfall	West Pier	C-024, C-025, C-033
2	Backflow	SW Outfall	West Pier	C-025, C-027, C-034
3	Backflow	Combined Sewer Connection	Hamilton Avenue	C-025, C-028
4	Backflow	Bilge Line	West Pier	C-025, C-027
5	Backflow	Bilge Line	West Pier	C-025, C-027
6	Inflow	Double Swinging Door	North Exterior Wall	A-110, A-200
7	Inflow	Crane Disconnect Box	North Exterior Wall	A-110, A-200
8	Inflow	Single Swinging Door	North Exterior Wall	A-110, A-200
9	Inflow	Large Roll-up Door	North Exterior Wall	A-110, A-200
10	Inflow	Large Roll-up Door	North Exterior Wall	A-110, A-200
11	Inflow	Large Roll-up Door	North Exterior Wall	A-110, A-200
12	Inflow	Large Roll-up Door	North Exterior Wall	A-110, A-200
13	Inflow	Large Roll-up Door	North Exterior Wall	A-110, A-200
14	Inflow	Crane Disconnect Box	North Exterior Wall	A-110, A-200
15	Inflow	Crane Disconnect Box	North Exterior Wall	A-110, A-200
16	Inflow	Large Roll-up Door	North Exterior Wall	A-110, A-200
17	Inflow	Single Swinging Door	East Exterior Wall	A-110, A-201
18	Inflow	Double Swinging Door	East Exterior Wall	A-110, A-201
19	Inflow	Alum. Window	East Exterior Wall	A-110, A-201
20	Inflow	Alum. Window	South Exterior Wall	A-110, A-202
21	Inflow	Alum. Window	South Exterior Wall	A-110, A-202
22	Inflow	Alum. Window	South Exterior Wall	A-110, A-202
23	Inflow	Alum. Window	South Exterior Wall	A-110, A-202
0 <i>1</i>	Inflow	Alum Window	South Exterior Wall	Δ_110 Δ_202

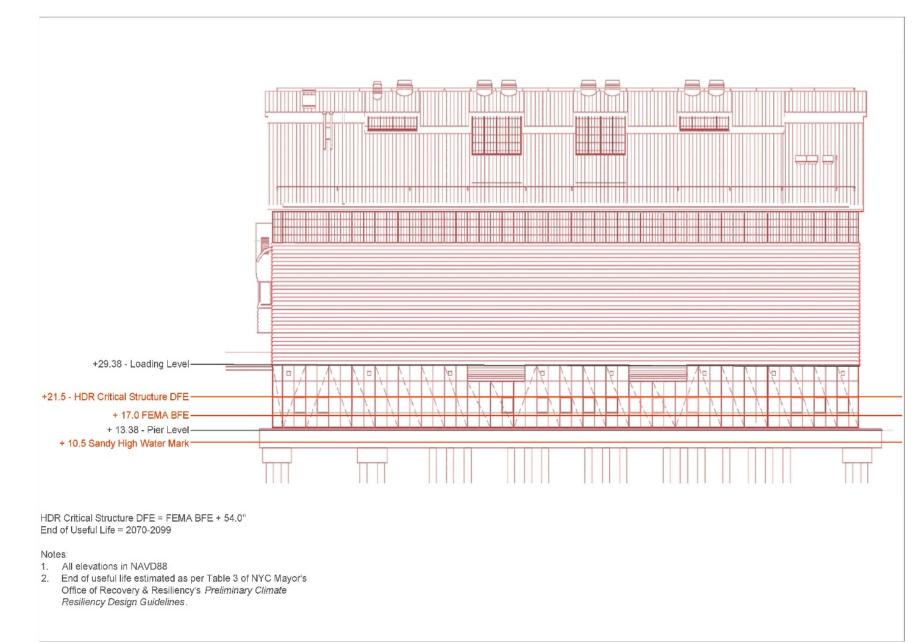
Inflow and Backflow Vulnerabilities – Hamilton Avenue

Design Flood Elevation: +14.50 Pier Level : +9.45			
Critical Area	Vulnerability Type	Number of Vulnerabilities	Comments
Combined Sewer Connection	Backflow	1	Discharges to sewer manhole
Stormwater Outfall	Backflow	2	Discharges to Gowanus Canal
Bilge Lines	Backflow	2	Connects to interior drainage
Exterior Walls	Inflow	52	Door, window, crane box, utilities
Electrical Room	Inflow	2	Door
Fire Pump and Meter Room	Inflow	8	Door, utilities
HVAC Room	Inflow	9	Door, utilities


Southwest Brooklyn Profile

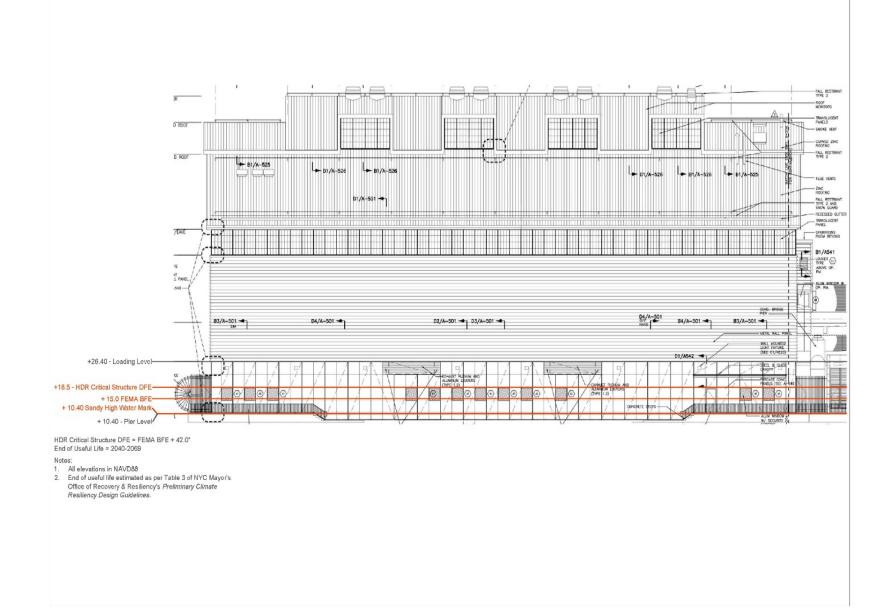
Inflow and Backflow Vulnerabilities – Southwest Brooklyn

Design Flood Elevation: +14.50 Pier Level : +9.45					
Critical Area	Vulnerability Type	Number of Vulnerabilities	Comments		
Combined Sewer Connection	Backflow	1	Discharges to sewer manhole		
Stormwater Outfall	Backflow	2	Discharges to Gowanus Canal		
Bilge Lines	Backflow	2	Connects to interior drainage		
Exterior Walls	Inflow	52	Door, window, crane box, utilities		
Electrical Room	Inflow	2	Door		
Fire Pump and Meter Room	Inflow	8	Door, utilities		
HVAC Room	Inflow	9	Door, utilities		


59th Street Profile

Inflow and Backflow Vulnerabilities – 59th Street

Design Flood Elevation: +18.50 Pier Level : +5.90				
Vulnerability Type	Number of Vulnerabilities	Comments		
Backflow	1	Discharges to sewer manhole		
Inflow	9	Ducts, doors, fans, utilities		
Inflow	2	Door, louver		
Inflow	10	Door, louver, exhaust, utilities		
Inflow	10	Door, louver, utilities		
Inflow	26	Door, window, fixture, utilities		
-	TypeBackflowInflowInflowInflowInflow	TypeVulnerabilitiesBackflow1Inflow9Inflow2Inflow10Inflow10		


North Shore Profile

Inflow and Backflow Vulnerabilities – North Shore

Design Flood Elevation: +21.50 Pier Level : +13.38				
Critical Area	Vulnerability Type	Number of Vulnerabilities	Comments	
Sanitary Sewer Connection	Backflow	1	Discharges to sewer manhole	
Stormwater Outfall	Backflow	3	Discharges to Flushing Bay	
Roof Drain	Backflow	4	Discharges to Flushing Bay	
Exterior Walls	Inflow	45	Door, window, louver, utilities	
Ejector Room	Inflow	4	Door, utilities	
Electrical Room #1	Inflow	1	Door	
Fire Pump and Meter Room	Inflow	10	Door, utilities	
HVAC Room	Inflow	7	Door, utilities	
Separator Room	Inflow	4	Door, utilities	

East 91st Profile

Inflow and Backflow Vulnerabilities – East 91st Street

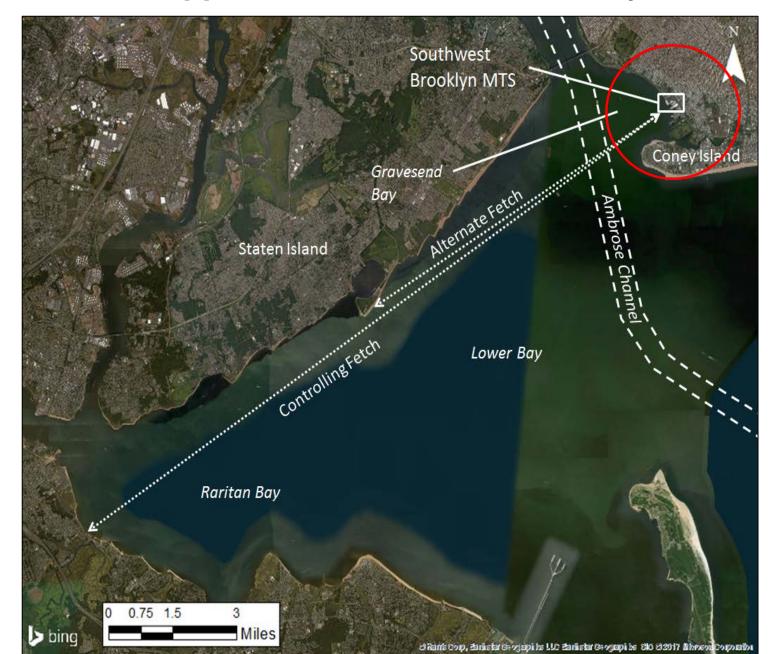
Design Flood Elevation: +18.50					
Pier Level : +10.40					
Critical Area	Vulnerability Type	Number of Vulnerabilities	Comments		
Combined Sewer Connection	Backflow	1	Discharges to sewer manhole		
Stormwater Outfalls	Backflow	5	Treatment units and connections		
Exterior Walls	Inflow	39	Door, window, crane box, utilities		
Ejector Pump Room	Inflow	3	Door, utilities		
Electrical Room	Inflow	2	Door		
Fire Pump and Meter Room	Inflow	11	Door, utilities		
HVAC Room	Inflow	9	Door, utilities		
Separator Room	Inflow	6	Door, utilities		

What About Loading Factors Other Than Elevated Water Surface Elevations?

Vessel Impact (Breakaway during Superstorm Sandy)

Vessel Impact (Breakaway during Superstorm Sandy)

Impact due to Waves (Breezy Point during Sandy)


Wave Loading During Coastal Storm

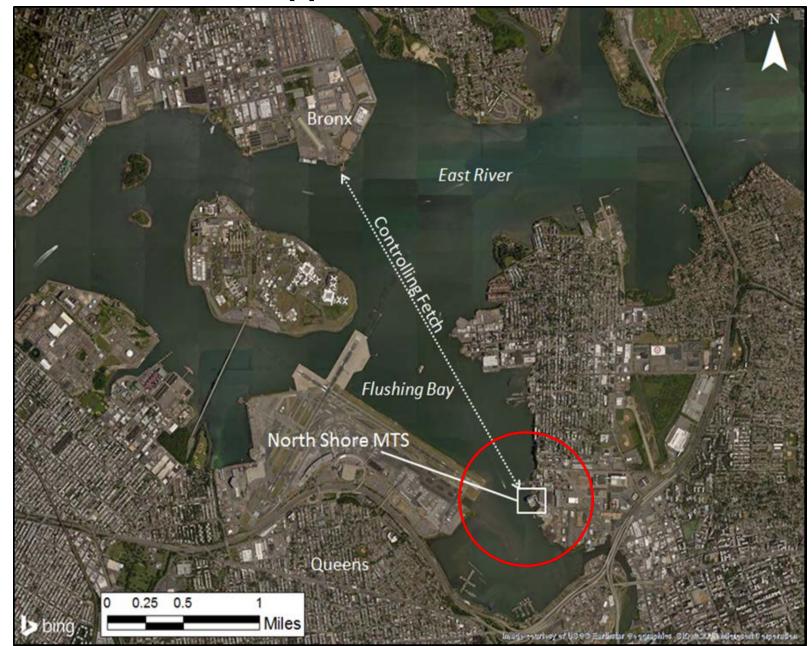
- Estimate wave heights during storm
- USACE wave model
- Model Input
 - Storm surge elevation (FEMA Preliminary FIRM)
 - Water Depth (NOAA)
 - $_{\rm o}$ Wind Speed (FEMA)
 - Fetch or 'Angle of Wave Approach' / Engineering Judgment

Wave Loading References

- The ACES model was used to develop wave heights.
- Wave loads were calculated for piles, deck elements, and vertical walls using USACE methodologies and guidance in "Piers, jetties, and related structures exposed to waves: Guideline for hydraulic loadings" (HR Wallingford 2004)

Wave Approach at Southwest Brooklyn

Wave Approach at Hamilton Avenue


Wave Approach at 59th Street

Wave Approach at East 91st Street

Wave Approach at North Shore

Wave Heights at Five MTSs During 100-yr Coastal Storm

Facility	Wave Height (ft)	Wave Period (sec)
Southwest Brooklyn	10.6	6.2
Hamilton	1.1	1.2
North Shore	5.4	3.6
West 59 th Street	11.9	5.9
East 91 st Street	4.3	3.1

Wave Loads

	MTS Site				
Parameter	Southwest Brooklyn	Hamilton Avenue	North Shore	West 59 th Street	East 91 st Street
Pile Loading					
Total Horizontal Force Per Pile (kip)	-	-	3.9	3.1	1.2
Decking Loading					
Horizontal Force Per LF (kip/ft)	-	-	0.2	0.7	0.3
Vertical Pressure (kip/ft ²)	-	-	0.4	0.9	0.4
Building Loading					
Horizontal Force Per LF (kip/ft)	10.1	0.4	3.0	16.1	2.1
Bulkhead Loading					
Horizontal Force Per LF (kip/ft)	16.3	1.0	-	-	-

Vessel Impact

- Two methods of computing vessel loads were compared: American Association of State Highways and Transportation Officials (AASHTO) and that recommended by the USACE Hurricane Storm Damage Risk Reduction Design Guidelines (HSDRRDGs)
- The loads for both methods were found to be similar.
- The USACE HSDRRDGs define loads for different coastal settings, based on typical <u>vessel type</u> and <u>the degree of facility</u> <u>exposure</u>.

Zone 1A – Barge Impact Design Load Cases – Protected Waterways

- Usual no vessel load
- Unusual 200 kip load applied to top of wall
- Extreme Case 1 400 kip load applied to top of wall (including SWL and Wind)
- Extreme Case 2 200 kip load applied to top of wall (including SWL and Wave)

Zone 1B – Barge Impact Design Load Cases – Waterways Directly Exposed to Tidal Surge

- Usual no vessel load
- Unusual 225 kip load applied to top of wall
- Extreme Case 1 450 kip load applied to top of wall (including SWL and Wind)
- Extreme Case 2 225 kip load applied to top of wall (including SWL and Wave)

Zone 2 – Boat Impact Design Load Case

- Usual no boat impact load
- Unusual 50 kip load applied to top of wall
- Extreme Not Applicable

Vessel Loads

North Shore MTS

Protected location

• Assume Zone 2 – no barge impact but recreational boat impact (50 kips) – storm surge will still affect the facility

East 91st Street

- East River potential for impact depending on wind direction during storm somewhat protected
- $_{\rm o}$ Further inland than other MTS locations
- Assume Zone 1A Extreme Case 2 (200 kips)

West 59th Street

o Hudson River – potential for impact – vulnerable to large vessels and MTS is constructed on an existing pier

- Although somewhat inland it is exposed to impact
- Assume Zone 1B Case 1 (450 kips)

Hamilton Avenue

Hudson River/Gowanus Canal – Somewhat protected in but exposed to storm surge
MTS orientation and location would be difficult to see a direct vessel strike
Assume Zone 2 – no barge impact but recreational boat impact (50 kips)

Southwest Brooklyn

Hudson River/Lower Bay – Highly vulnerable to vessel impact and storm surge
MTS orientation and location could see a direct hit
Assume Zone 1B – Case 1 (450 kips)

Debris Loading

- Definition of 'Debris' Floating material that wind and waves can propel into a structure (vegetative material – logs, limbs; signage, dumpsters, portable generators, other equipment/loose structures, etc)
- HDR compared guidance provided by ASCE 7 and the Hurricane and Storm Damage Risk Reduction System Design Guidelines (HSDRRSDGs)
- HSDRRSDs Guidelines were selected because they more conservative (i.e. larger values)

Vulnerability to Hydrostatic Forces, Waves, Debris, and Vessels – *Hamilton Ave*

- **Red**: High likelihood of structural instability
- **Orange**: Moderate likelihood of structural instability
- **Green**: Low likelihood of structural instability

Element	Still Water Level (SWL)	SWL + Wave	SWL + Wind + Boat or Debris Impact
Bulkhead			
Concrete Panels			
Concrete Walls			
Concrete Columns			

Vulnerability to Hydrostatic Forces, Waves, Debris, and Vessels – *Southwest Brooklyn*

- **Red**: High likelihood of structural instability
- **Orange**: Moderate likelihood of structural instability
- Green: Low likelihood of structural instability

Element	Still Water Level (SWL)	SWL + Wave	SWL + Wind + Boat or Debris Impact
Bulkhead			
Concrete Panels			
Concrete Walls			
Concrete Columns			

Vulnerability to Hydrostatic Forces, Waves, Debris, and Vessels – *E. 91st Street*

- **Red**: High likelihood of structural instability
- **Orange**: Moderate likelihood of structural instability
- Green: Low likelihood of structural instability

Element	Still Water Level (SWL)	SWL + Wave	SWL + Wind + Boat or Debris Impact
Pile Cap			
Pile			
Concrete Panels			
Concrete Walls			
Concrete			
Columns			

Vulnerability to Hydrostatic Forces, Waves, Debris, and Vessels – *North Shore*

- **Red**: High likelihood of structural instability
- **Orange**: Moderate likelihood of structural instability
- Green: Low likelihood of structural instability


Element	Still Water Level (SWL)	SWL + Wave	SWL + Wind + Boat or Debris Impact
Pile Cap			
Pile			
Concrete Panels			
Concrete Walls			
Concrete			
Columns			

Vulnerability to Hydrostatic Forces, Waves, Debris, and Vessels – *W. 59th Street*

- **Red**: High likelihood of structural instability
- **Orange**: Moderate likelihood of structural instability
- **Green**: Low likelihood of structural instability

Element	Still Water Level (SWL)	SWL + Wave	SWL + Wind + Boat or Debris Impact
Pile Cap			
Pile			
Kalwall Panels			
CMU Walls			
Steel Columns			

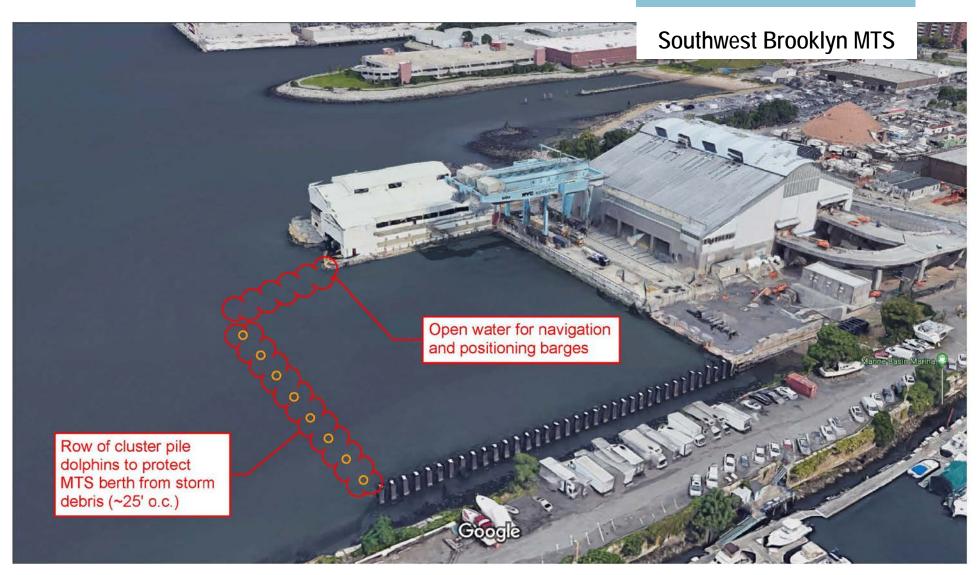
Moving Forward

North Shore MTS

200 f

Several historic images on Google Earth show tugs and barges staging along this side of the MTS.

Operations may preclude use of a dolphin "screen" along this side.


PILE CLUSTERS TO INTERCEPT DEBRIS AND VESSELS

0 0 0 0 0 0 0 0

.....

....

© 2018 Google earth

PILE CLUSTERS TO INTERCEPT DEBRIS AND VESSELS

QUESTIONS?

Flood Protection Conceptual Design Report, SW Brooklyn and E.91st Street MTSs, Greeley and Hansen, May 2013

System	Equipment	Location	Criticality
	Switchgear		Life Safety
Electrical	MCCs	Electrical Room #1	Life Safety
Electrical	Transformers	Electrical Room #1	Life Safety
	Panelboards		Life Safety
Emergency Power	Emergency Generator	Outside	Life Safety
Emergency Fower	Automatic Transfer Switches	Electrical Room #1	Life Safety
	Fire Pump		Life Safety
	Jockey Pump		Life Safety
Fire Protection	Fire Control Panel	Fire Pump and Meter Room	Life Safety
	Deluge Foam Tank		Life Safety
	Dry Sprinkler Air Compressor	-	Life Safety
Alarm System	Building Wide Alarm System	BWAS Room	Life Safety
Security System	Security System Equipment	Security Room	Life Safety
10.000	Air Conditioner Units		Non-critical
HVAC	Heating & Ventilation Unit	HVAC Room	Life Safety
	Oil Water Separator Tank	Concretes Dears	Process
Oil Water Separator	Sewage Ejector/Sump Pumps	Separator Room	Life Safety
Odor Control System	Odor Control Equip Package		Process
Service Water System	Service Water Equip Package		Process
	Booster Pump	Odan Cantural Datare	Non-critical
Domestic Water Systems	Water Heaters	Odor Control Room	Non-critical
Maintenance Oil Systems	Oil Tanks & Pump		Non-critical
Dust Suppression System	Dust Suppression Equip Package		Process
Lidding Operations	Container Transport System (Shuttle Car)	Lower Lidding Area	Process
Marina Environment	Capstans		Non-critical
Marine Equipment	Constant Tension Winches	Outside Pier Area	Non-critical
Canto Crons	Drive Motors		Process
Gantry Crane	Disconnect Switches		Process