Leverage it! Part 1: Models, Gages and Topo... Forecasting Flood Damage

Kimberley Pirri, PE, CFM AECOM

Thuy Patton, MPA, CFM
Colorado Water Conservation Board

I have models, gages, and topo...

- ✓ We have hydraulic models for our streams.
- ✓ We have an alert gage system.
- ✓ We have NWS predictive stream gages.
- ✓ We have digital topo for our streams.

Can I leverage that existing data to forecast flood inundation and damage???

Agenda

- Colorado Feasibility Study and DHS Study Recaps
- Colorado Pilot Study Tasks
 - Site Selection
 - H&H Updates
 - Raster Development
 - Risk Assessment & Flood Forecasting Metrics
 - Climate Change Modeling Results

Feasibility and DHS Recaps

Feasibility: Flood Forecasting and Warning System

From 2011 WMO Manual on Flood Forecasting and Warning, http://www.wmo.int/pages/prog/hwrp/publications/flood_forecasting_warning/WMO%201072_en.pdf

COLORADO
Colorado Water
Conservation Board
Department of Natural Resources

Adapting Risk MAP Products for Flood Forecasting

	Flow	Profiles	Boundaries	Depth	Loss
50%-ann. chance	✓	\checkmark	✓	\checkmark	✓
20%-ann. chance	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
10%-ann. chance	\checkmark	\checkmark	✓	\checkmark	\checkmark
4%-ann. chance	\checkmark	\checkmark	✓	\checkmark	\checkmark
2%-ann. chance	\checkmark	\checkmark	✓	✓	\checkmark
1%-ann. chance	\checkmark	\checkmark	✓	✓	\checkmark
0.2%-ann. chance	\checkmark	\checkmark	✓	\checkmark	\checkmark
0.1%-ann. chance	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
0.05%-ann. chance	\checkmark	\checkmark	✓	\checkmark	✓
PMF	✓	✓	✓	✓	✓

Additional "Composite" raster datasets: Flow, Gage stage, Loss

COLORADO
Colorado Water
Conservation Board
Department of Natural Resources

Percent Annual Chance Grid Development Process

Leverage It! Part 1

Creating Composite Datasets

Percent annual chance raster and "rating" curve can be used to produce other composite rasters like peak flow

Flood forecasting questions: Flood inundation for a certain peak flow amount

- Rainfall-runoff
 model may
 produce a peak
 flow estimate for
 a future event
- Peak Flow
 Composite
 Raster can
 quickly show
 inundation limits

Flood forecasting questions: Flood inundation for a certain gage stage

- Predicted
 maximum stage
 for river gauge
 for current
 ongoing event
- Gage Stage
 Composite
 Raster can show inundation limits associated with each stage

DHS Flood Forecasting Project

Colorado Pilot Study

Site Selection

Criteria

- Locations with range of hydrologic and terrain conditions
- Leverage existing modeling and nonregulatory Flood Risk Products (FRPs)
- Feasibility for additional return periods

Leverage It! Part 1 May 23, 2019

Department of Natural Resources

Selected Sites

#1 White River, Rio Blanco County, CO

- Zone A & AE with FW
- Mountain & Northwest Hydrologic Regions
- Hydrology: LPIII Gage Analysis
- Hydraulics: HEC-RAS 5.0.3

#2 Animas River, LaPlata County, CO

- BLE
- Southwest Hydrologic Region
- Hydrology: LPIII Gage Analysis
- Hydraulics: HEC-RAS 5.0.3

#3 Arkansas River, Lamar, CO

- Zone AE with FW
- Plains Hydrologic Region
- Hydrology: LPIII Gage Analysis
- Hydraulics: HEC-RAS 4.0

Hydrology Updates

Extend Hydrology

- NFIP Original Standard 10%, 2%, 1%, and 0.2%
- NFIP Current Standard 10%, 4%, 2%, 1%, 1%+, and 0.2%
- Full Range needed for Forecasting:
 99% (1-year) to 0.05% (2000-year)

Methods

- Gage Analysis Easy, Add return periods to analysis.
- Regression Analysis 99%, 0.1%, and 0.05% require Log/Log Curve Fitting
- Rainfall Runoff 99% through 0.1% possible through adding rainfall, but model debugging would be cumbersome, may need to instead consider Log/Log Curve-Fitting

Hydraulic Updates

Incorporate additional recurrence intervals

- Debug to resolve crossing profiles
 - Ineffective Flow Areas, some channel banks

Rating Curves

Develop curves to support interpolation using the grids

Model Output Grids

Output WSEL Grids and Depth Grids

- WSEL for Percent Annual Chance & Composites
- Depth for Hazus

Rating Curves + Model Output Grids = Results

- Percent Annual Chance
- Peak Flow Composite
- Gage Stage Composite
- Loss Composite

Animas River Composite Grids

From DHS Study: Risk Assessment and Flood Forecasting Metrics

- Compare Flood Loss (from models like Hazus) and associated Average Annualized Loss (AAL) for range of events
- NFIP AAL = AAL for events within FEMA regulatory NFIP floodplain (10%, 4%, 2%, and 1%-annual chance events)
- Flood Forecasting AAL = AAL for all events modeled (99%, 50%, 20%, 10%, 4%, 2%, 1%, 0.5%, 0.2%, 0.1%, and 0.05%-annual chance for this CWCB study)
- Flood Forecasting AAL Ratio = Flood Forecasting AAL / NFIP AAL

From DHS Study: Risk Assessment and Flood Forecasting Metrics

- Lower Tail =Portion of AALbelow 10%-annual-chanceevent
- Upper Tail =
 Portion of AAL
 above the 1% annual chance
 event losses
- AverageDHS Study AALRatio = 2.73

Animas River: Risk Assessment

- NFIP AAL = \$3.1 M/year
- Flood ForecastingAAL =\$12.7 M/year
- Lower Tail = 74%,NFIP AAL = 24%,Upper Tail = 1%
- Flood ForecastingAAL Ratio = 4.11

Path forward in Colorado

CWCB's PMRs in Colorado include the WSEL grids, depth grids, and % Annual Chance Grid based on FEMA standard frequencies at this time.

- ✓ Many NWS predictive gages in CO = Can advance to forecasting inundation
- ✓ Can run Hazus for potential damages
- ✓ Dovetails with FEMA's Risk Rating 2.0 efforts

Possible next step: Developing a guidebook for developing composite grids to share with communities

Potential for leverage: Communities could leverage funding to request the composite grids.

COLORADO
Colorado Water
Conservation Board

AECON

Colorado Climate Change Modeling

What did the climate change analysis tell us about peak flows?

- Arkansas River in Lamar needs better data, but likely climate impacts will be minimal
- Animas River and White River will likely see drastic decreases in peak flows
 - Warmer Spring was strongest factor in peak flow equations and saw biggest changes
 - Warmer Fall also had an impact, although weaker than Spring factor
 - Precipitation change was weakest factor, with White River seeing likely increase in Winter/Spring and Animas with little likely change
- Losses had larger relative changes than Peak Flow

Leverage It! Part 1

May 23, 2019 Page 25 Colorado Water Conservation Board

Questions?

Kimberley Pirri, PE, CFM kimberley.pirri@aecom.com

Thuy Patton, MPA, CFM Thuy.patton@state.co.us

Heather Pasch, CFM
Heather.pasch@aecom.com

Dr. Shane Parson, PE, PhD, CFM shane.parson@aecom.com

